Back to Search Start Over

Strain effects on stability of topological ferroelectric polar configurations in (PbTiO3)n/(SrTiO3)n superlattices.

Authors :
Dai, Cheng
Hong, Zijian
Das, Sujit
Tang, Yun-Long
Martin, Lane W.
Ramesh, Ramamoorthy
Chen, Long-Qing
Source :
Applied Physics Letters. 7/31/2023, Vol. 123 Issue 5, p1-5. 5p.
Publication Year :
2023

Abstract

The (PbTiO3)n/(SrTiO3)n (PTO/STO) superlattice system has been shown to exhibit interesting topological phases (e.g., vortices and skyrmions) in addition to normal ferroelectric domain states. Existing studies are mostly focused on the dependence of topological polar distributions and properties of PTO/STO superlattice on its periodicity. Here, we study the strain effect on the topological phase transitions and ferroelectric domain structures employing phase-field simulations. We summarized in an isotropic strain (in-plane misfit strain along the x direction is equal to that along the y direction) periodicity phase diagram displaying the stability regions of different polar topological states, including normal ferroelectric twins, vortices, skyrmions, and mixtures of vortices and twins. We also analyzed the polarization configurations under anisotropic in-plane strains (in-plane misfit strain along the x direction is not equal to that along the y direction) and demonstrated that the strain anisotropy can be used to tune the directions of vortex arrays along either the [100] pc or [010] pc directions or labyrinth vortex arrays. This work offers guidance to manipulating polar structures in the PTO/STO superlattices via strain engineering. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
00036951
Volume :
123
Issue :
5
Database :
Academic Search Index
Journal :
Applied Physics Letters
Publication Type :
Academic Journal
Accession number :
169786971
Full Text :
https://doi.org/10.1063/5.0160901