Back to Search Start Over

Electrical performance enhancement of a triboelectric nanogenerator based on epoxy resin/BaTiO3 by Al nanopowder addition for low power electronic devices.

Authors :
Amorntep, Narong
Namvong, Ariya
Wongsinlatam, Wullapa
Remsungnen, Tawun
Siritaratiwat, Apirat
Srichan, Chavis
Sriphan, Saichon
Pakawanit, Phakkhananan
Ariyarit, Atthaporn
Supasai, Wisut
Jutong, Nuttachai
Narkglom, Sorawit
Surawanitkun, Chayada
Source :
Nanotechnology. 10/15/2023, Vol. 34 Issue 42, p1-11. 11p.
Publication Year :
2023

Abstract

Triboelectric nanogenerators (TENGs) are crucial for applications such as smart sensors and bio-electronics. In the current work, we aimed for improved performance of TENGs with incorporation of BaTiO3 powder, which is known for its strong ferroelectric properties, combining it with epoxy resin to improve the flexibility of our devices. We observed that our TENGs can operate for over 24 000 cycles with no degradation of function. Additionally, we improved the electrical performance of the TENGs by incorporating various aluminum concentrations that change the electronic properties in the form of mixed epoxy resin, BaTiO3, and Al nanopowders. To identify the optimum conditions for the best performance, we analyzed the electrical characteristics and material properties by employing scanning electron microscopy, energy dispersive x-ray spectroscopy, and x-ray diffractometry characterization techniques. Our findings suggest that this innovative combination of materials and optimization techniques can significantly improve the performance of TENGs, making them ideal for practical applications in various fields, such as low-power electronics, environmental monitoring and healthcare. Moreover, these enhanced TENGs can serve as sustainable and dependable energy sources for various applications. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
09574484
Volume :
34
Issue :
42
Database :
Academic Search Index
Journal :
Nanotechnology
Publication Type :
Academic Journal
Accession number :
169807735
Full Text :
https://doi.org/10.1088/1361-6528/ace724