Back to Search Start Over

Mechanical, thermal, and dielectric properties of glass mullite composites for low‐temperature cofired ceramic and radome applications.

Authors :
Bilaç, Oğuzhan
Duran, Cihangir
Source :
International Journal of Applied Ceramic Technology. Sep2023, Vol. 20 Issue 5, p3287-3296. 10p.
Publication Year :
2023

Abstract

SiO2‐Al2O3‐CaO‐based glass (10–60 wt%)/mullite composites were investigated for the LTCC and radome applications. The optimum densification temperatures decreased from 1550°C (10 wt% glass) to 1400°C (30 wt% glass) by means of liquid‐phase sintering, and to 850°C–825°C (50–60 wt% glass) by means of viscous phase sintering. XRD analysis showed that mullite was the main phase as well as in situ crystallized anorthite after 825°C. The composite with 20 wt% glass was a suitable candidate for the radome applications (bulk density = 2.86 g/cm3 after sintering at 1450°C, dielectric constant (loss) = 7.12 (0.0025) at 5 MHz, thermal expansion coefficient = 4.27 ppm/°C between 25°C and 800°C, thermal shock resistance parameter = 162°C), and the composite with 50 wt% glass was a suitable candidate for the low‐temperature cofired ceramic applications (bulk density = 2.64 g/cm3 after sintering at 850°C, dielectric constant (loss) = 6.79 (0.0043) at 5 MHz, thermal conductivity = 2.11 W/m⋅K at 25°C, and thermal expansion coefficient = 3.93 ppm/°C between 25°C and 300°C). [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
1546542X
Volume :
20
Issue :
5
Database :
Academic Search Index
Journal :
International Journal of Applied Ceramic Technology
Publication Type :
Academic Journal
Accession number :
169809253
Full Text :
https://doi.org/10.1111/ijac.14437