Back to Search Start Over

LncRNA GAS5 Attenuates Cardiac Electrical Remodeling Induced by Rapid Pacing via the miR-27a-3p/HOXa10 Pathway.

Authors :
Xi, Siqi
Wang, Hao
Chen, Jindong
Gan, Tian
Zhao, Liang
Source :
International Journal of Molecular Sciences. Aug2023, Vol. 24 Issue 15, p12093. 18p.
Publication Year :
2023

Abstract

Previous studies indicated long non-coding RNAs (lncRNAs) participated in the pathogenesis of atrial fibrillation (AF). However, little is known about the role of lncRNAs in AF-induced electrical remodeling. This study aimed to investigate the regulatory effect of lncRNA GAS5 (GAS5) on the electrical remodeling of neonatal rat cardiomyocytes (NRCMs) induced by rapid pacing (RP). RNA microarray analysis yielded reduced GAS5 level in NRCMs after RP. RT-qPCR, western blot, and immunofluorescence yielded downregulated levels of Nav1.5, Kv4.2, and Cav1.2 after RP, and whole-cell patch-clamp yielded decreased sodium, potassium, and calcium current. Overexpression of GAS5 attenuated electrical remodeling. Bioinformatics tool prediction analysis and dual luciferase reporter assay confirmed a direct negative regulatory effect for miR-27a-3p on lncRNA-GAS5 and HOXa10. Further analysis demonstrated that either miR-27a-3p overexpression or the knockdown of HOXa10 further downregulated Nav1.5, Kv4.2, and Cav1.2 expression. GAS5 overexpression antagonized such effects in Nav1.5 and Kv4.2 but not in Cav1.2. These results indicate that, in RP-treated NRCMs, GAS5 could restore Nav1.5 and Kv4.2 expression via the miR-27a-3p/HOXa10 pathway. However, the mechanism of GAS5 restoring Cav1.2 level remains unclear. Our study suggested that GAS5 regulated cardiac ion channels via the GAS5/miR-27a-3p/HOXa10 pathway and might be a potential therapeutic target for AF. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
16616596
Volume :
24
Issue :
15
Database :
Academic Search Index
Journal :
International Journal of Molecular Sciences
Publication Type :
Academic Journal
Accession number :
169926573
Full Text :
https://doi.org/10.3390/ijms241512093