Back to Search Start Over

Power system stability assessment method based on GAN and GRU‐Attention using incomplete voltage data.

Authors :
Deng, Xuan
Hu, Yufan
Jia, Yiyang
Peng, Mao
Source :
IET Generation, Transmission & Distribution (Wiley-Blackwell). Aug2023, Vol. 17 Issue 16, p3692-3705. 14p.
Publication Year :
2023

Abstract

The social economy is growing rapidly, and the power grid load demand is increasing. To maintain the stability of the power grid, it is crucial to achieve accurate and rapid power system stability assessment. In the actual operation of the power network, data loss is an unavoidable situation. However, most of the data‐driven models currently used assume that the input data is complete, which has obvious limitations in real‐world applications. This paper suggests an IVS‐GAN model to assess power system stability using incomplete phasor measurement unit measurement data with random loss. The proposed method combines the super‐resolution perception technology based on generative adversarial network (GAN) with a time‐series signal classification model. The generator adopts a 1D U‐Net network and uses convolutional layers to complete and recover missing data. The discriminator adopts a new gated recurrent unit–attention architecture proposed here to better extract voltage temporal variation features on key buses. The result of this paper is that the stability evaluation method outperforms other algorithms in high voltage data loss rates on the New England 10‐machine 39‐bus system. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
17518687
Volume :
17
Issue :
16
Database :
Academic Search Index
Journal :
IET Generation, Transmission & Distribution (Wiley-Blackwell)
Publication Type :
Academic Journal
Accession number :
169971997
Full Text :
https://doi.org/10.1049/gtd2.12925