Back to Search Start Over

Besov‐type spaces associated with Lebedev‐Skalskaya wavelet transform.

Authors :
Pathak, Ashish
Pandey, Shrish
Source :
Mathematical Methods in the Applied Sciences. 9/30/2023, Vol. 46 Issue 14, p15626-15640. 15p.
Publication Year :
2023

Abstract

In the current study, we define Besov‐type spaces related to the Lebedev‐Skalskaya (LS‐) transform. We obtain Parseval's relation for continuous LS‐wavelet transform in L2(ℝ+;dx)$$ {L}^2\left({\mathrm{\mathbb{R}}}^{+}; dx\right) $$ space, and then using it, we extend the notion of continuous LS‐wavelet transform on Lp(ℝ+;dx)$$ {L}^p\left({\mathrm{\mathbb{R}}}^{+}; dx\right) $$ space and, in the end, derive continuity of LS‐wavelet transform on Besov‐type spaces and characterize the Besov LS‐space using LS‐wavelet coefficients. [ABSTRACT FROM AUTHOR]

Subjects

Subjects :
*BESOV spaces
*WAVELET transforms

Details

Language :
English
ISSN :
01704214
Volume :
46
Issue :
14
Database :
Academic Search Index
Journal :
Mathematical Methods in the Applied Sciences
Publication Type :
Academic Journal
Accession number :
170008684
Full Text :
https://doi.org/10.1002/mma.9416