Back to Search Start Over

Superpixels With Content-Adaptive Criteria.

Authors :
Yuan, Ye
Zhang, Wei
Yu, Hai
Zhu, Zhiliang
Source :
IEEE Transactions on Image Processing. 2021, Vol. 30, p7702-7716. 15p.
Publication Year :
2021

Abstract

Superpixels are widely used in computer vision applications. Most of the existing superpixel methods use established criteria to indiscriminately process all pixels, resulting in superpixel boundary adherence and regularity being unnecessarily inter-inhibitive. This study builds upon a previous work by proposing a new segmentation strategy that classifies image content into meaningful areas containing object boundaries and meaningless parts that include color-homogeneous and texture-rich regions. Based on this classification, we design two distinct criteria to process the pixels in different environments to achieve highly accurate superpixels in content-meaningful areas and keep the regularity of the superpixels in content-meaningless regions. Additionally, we add a group of weights when adopting the color feature, successfully reducing the undersegmentation error. The superior accuracy and the moderate compactness achieved by the proposed method in comparative experiments with several state-of-the-art methods indicate that the content-adaptive criteria efficiently reduce the compromise between boundary adherence and compactness. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
10577149
Volume :
30
Database :
Academic Search Index
Journal :
IEEE Transactions on Image Processing
Publication Type :
Academic Journal
Accession number :
170077936
Full Text :
https://doi.org/10.1109/TIP.2021.3108403