Back to Search
Start Over
Towards Weakly-Supervised Focus Region Detection via Recurrent Constraint Network.
- Source :
-
IEEE Transactions on Image Processing . 2020, Vol. 29, p1356-1367. 12p. - Publication Year :
- 2020
-
Abstract
- Recent state-of-the-art methods on focus region detection (FRD) rely on deep convolutional networks trained with costly pixel-level annotations. In this study, we propose a FRD method that achieves competitive accuracies but only uses easily obtained bounding box annotations. Box-level tags provide important cues of focus regions but lose the boundary delineation of the transition area. A recurrent constraint network (RCN) is introduced for this challenge. In our static training, RCN is jointly trained with a fully convolutional network (FCN) through box-level supervision. The RCN can generate a detailed focus map to locate the boundary of the transition area effectively. In our dynamic training, we iterate between fine-tuning FCN and RCN with the generated pixel-level tags and generate finer new pixel-level tags. To boost the performance further, a guided conditional random field is developed to improve the quality of the generated pixel-level tags. To promote further study of the weakly supervised FRD methods, we construct a new dataset called FocusBox, which consists of 5000 challenging images with bounding box-level labels. Experimental results on existing datasets demonstrate that our method not only yields comparable results than fully supervised counterparts but also achieves a faster speed. [ABSTRACT FROM AUTHOR]
- Subjects :
- *RANDOM fields
*IMAGE segmentation
*TASK analysis
Subjects
Details
- Language :
- English
- ISSN :
- 10577149
- Volume :
- 29
- Database :
- Academic Search Index
- Journal :
- IEEE Transactions on Image Processing
- Publication Type :
- Academic Journal
- Accession number :
- 170078064
- Full Text :
- https://doi.org/10.1109/TIP.2019.2942505