Back to Search
Start Over
Graph-Based Non-Convex Low-Rank Regularization for Image Compression Artifact Reduction.
- Source :
-
IEEE Transactions on Image Processing . 2020, Vol. 29, p5374-5385. 12p. - Publication Year :
- 2020
-
Abstract
- Block transform coded images usually suffer from annoying artifacts at low bit-rates, because of the independent quantization of DCT coefficients. Image prior models play an important role in compressed image reconstruction. Natural image patches in a small neighborhood of the high-dimensional image space usually exhibit an underlying sub-manifold structure. To model the distribution of signal, we extract sub-manifold structure as prior knowledge. We utilize graph Laplacian regularization to characterize the sub-manifold structure at patch level. And similar patches are exploited as samples to estimate distribution of a particular patch. Instead of using Euclidean distance as similarity metric, we propose to use graph-domain distance to measure the patch similarity. Then we perform low-rank regularization on the similar-patch group, and incorporate a non-convex $l_{p}$ penalty to surrogate matrix rank. Finally, an alternatively minimizing strategy is employed to solve the non-convex problem. Experimental results show that our proposed method is capable of achieving more accurate reconstruction than the state-of-the-art methods in both objective and perceptual qualities. [ABSTRACT FROM AUTHOR]
Details
- Language :
- English
- ISSN :
- 10577149
- Volume :
- 29
- Database :
- Academic Search Index
- Journal :
- IEEE Transactions on Image Processing
- Publication Type :
- Academic Journal
- Accession number :
- 170078306
- Full Text :
- https://doi.org/10.1109/TIP.2020.2975931