Back to Search Start Over

Long-term iTBS Improves Neural Functional Recovery by Reducing the Inflammatory Response and Inhibiting Neuronal Apoptosis Via miR-34c-5p/p53/Bax Signaling Pathway in Cerebral Ischemic Rats.

Authors :
Hu, Shouxing
Wang, Xianbin
Yang, Xianglian
Ouyang, Shuai
Pan, Xiao
Fu, Yingxue
Wu, Shuang
Source :
Neuroscience. Sep2023, Vol. 527, p37-51. 15p.
Publication Year :
2023

Abstract

• Long-term iTBS ameliorated neurological deficits and neurological damage. • Long-term iTBS could consistently improve the neuronal microenvironment. • iTBS treatment altered miRNA expression in the peri-infarcted area. • iTBS inhibit neuronal apoptosis via miR-34c-5p/p53/Bax signaling pathway. To investigate intermittent theta-burst stimulation (iTBS) effect on ischemic stroke and the underlying mechanism of neurorehabilitation, we developed an ischemia/reperfusion (I/R) injury model in Sprague-Dawley (SD) rats using the middle cerebral artery occlusion/reperfusion (MCAO/r) method. Next, using different behavioral studies, we compared the improvement of the whole organism with and without iTBS administration for 28 days. We further explored the morphological and molecular biological alterations associated with neuronal apoptosis and neuroinflammation by TTC staining, HE staining, Nissl staining, immunofluorescence staining, ELISA, small RNA sequencing, RT-PCR, and western blot assays. The results showed that iTBS significantly protected against neurological deficits and neurological damage induced by cerebral I/R injury. iTBS also significantly decreased brain infarct volume and increased the number of surviving neurons after 28 days. Additionally, it was observed that iTBS decreased synaptic loss, suppressed activation of astrocytes and M1-polarized microglia, and simultaneously promoted M2-polarized microglial activation. Furthermore, iTBS intervention inhibited neuronal apoptosis and exerted a positive impact on the neuronal microenvironment by reducing neuroinflammation in cerebral I/R injured rats. To further investigate the iTBS mechanism, this study was conducted using small RNA transcriptome sequencing of various groups of peri-infarcted tissues. Bioinformatics analysis and RT-PCR discovered the possible involvement of miR-34c-5p in the mechanism of action. The target genes prediction and detection of dual-luciferase reporter genes confirmed that miR-34c-5p could inhibit neuronal apoptosis in cerebral I/R injured rats by regulating the p53/Bax signaling pathway. We also confirmed by RT-PCR and western blotting that miR-34c-5p inhibited Bax expression. In conclusion, our study supports that iTBS is vital in inhibiting neuronal apoptosis in cerebral I/R injured rats by mediating the miR-34c-5p involvement in regulating the p53/Bax signaling pathway. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
03064522
Volume :
527
Database :
Academic Search Index
Journal :
Neuroscience
Publication Type :
Academic Journal
Accession number :
170086329
Full Text :
https://doi.org/10.1016/j.neuroscience.2023.07.014