Back to Search Start Over

A Novel Catheter Shape-Sensing Method Based on Deep Learning with a Multi-Core Optical Fiber.

Authors :
Han, Fei
He, Yanlin
Zhu, Hangwei
Zhou, Kangpeng
Source :
Sensors (14248220). Aug2023, Vol. 23 Issue 16, p7243. 16p.
Publication Year :
2023

Abstract

In this paper, we propose a novel shape-sensing method based on deep learning with a multi-core optical fiber for the accurate shape-sensing of catheters and guidewires. Firstly, we designed a catheter with embedded multi-core fiber containing three sensing outer cores and one temperature compensation middle core. Then, we analyzed the relationship between the central wavelength shift, the curvature of the multi-core Fiber Bragg Grating (FBG), and temperature compensation methods to establish a Particle Swarm Optimization (PSO) BP neural network-based catheter shape sensing method. Finally, experiments were conducted in both constant and variable temperature environments to validate the method. The average and maximum distance errors of the PSO-BP neural network were 0.57 and 1.33 mm, respectively, under constant temperature conditions, and 0.36 and 0.96 mm, respectively, under variable temperature conditions. This well-sensed catheter shape demonstrates the effectiveness of the shape-sensing method proposed in this paper and its potential applications in real surgical catheters and guidewire. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
14248220
Volume :
23
Issue :
16
Database :
Academic Search Index
Journal :
Sensors (14248220)
Publication Type :
Academic Journal
Accession number :
170908369
Full Text :
https://doi.org/10.3390/s23167243