Back to Search Start Over

Bioflim Formation and Sloughing in Serratia marcescens Are Controlled by Quorum Sensing and Nutrient Cues.

Authors :
Rice, S. A.
Koh, K. S.
Queck, S. Y.
Labbate, M.
Lam, K. W.
Kjelleberg, S.
Source :
Journal of Bacteriology. May2005, Vol. 187 Issue 10, p3477-3485. 9p. 1 Diagram, 2 Charts, 1 Graph.
Publication Year :
2005

Abstract

We describe here a role for quorum sensing in the detachment, or sloughing, of Serratia marcescens filamentous bioflims, and we show that nutrient conditions affect the biofilm morphotype. Under reduced carbon or nitrogen conditions, S. marcescens formed a classical bioflim consisting of microcolonies. The filamentous bioflim could be converted to a microcolony-type biofilm by switching the medium after establishment of the biofilm. Similarly, when initially grown as a microcolony bioflim, S. marcescens could be converted back to a filamentous biofilm by increasing the nutrient composition. Under high-nutrient conditions, an N-acyl homoserine lactone quorum-sensing mutant formed bioflims that were indistinguishable from the wild-type biofllms. Similarly, other quorum-sensing-dependent behaviors, such as swarming motility, could be rendered quorum sensing independent by manipulating the growth medium. Quorum sensing was also found to be involved in the sloughing of the filamentous biofilm. The biofilm formed by the bacterium consistently sloughed from the substratum after approximately 75 to 80 h of development. The quorum-sensing mutant, when supplemented with exogenous signal, formed a wild-type filamentous biofilm and sloughed at the same time as the wild type, and this was independent of surfactant production. When we removed the signal from the quorum-sensing mutant prior to the time of sloughing, the biofilm did not undergo significant detachment. Together, the data suggest that biofilm formation by S. marcescens is a dynamic process that is controlled by both nutrient cues and the quorum-sensing system. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
00219193
Volume :
187
Issue :
10
Database :
Academic Search Index
Journal :
Journal of Bacteriology
Publication Type :
Academic Journal
Accession number :
17093348
Full Text :
https://doi.org/10.1128/JB.187.10.3477-3485.2005