Back to Search Start Over

Influence of temperature on alkaloid levels and fall armyworm performance in endophytic tall fescue and perennial ryegrass.

Authors :
Salminen, Seppo O.
Richmond, Douglas S.
Grewal, Sukhbir K.
Grewal, Parwinder S.
Source :
Entomologia Experimentalis et Applicata. Jun2005, Vol. 115 Issue 3, p417-426. 10p.
Publication Year :
2005

Abstract

The symbiotic relationships betweenNeotyphodiumendophytes (Clavicipitacea) and certain cool-season (C3) grasses result in the synthesis of several alkaloids that defend the plant against herbivory. Over a 3 month period we evaluated the effects of temperature on the expression of these alkaloids in tall fescue,Festuca arundinaceaSchreb, and perennial ryegrass,Lolium perenneL. (Poaceae). Response surface regression analysis indicated that month, temperature, and their interaction had an impact on the alkaloid levels in both grasses. We aimed to identify the alkaloids most closely associated with enhanced resistance to the fall armyworm,Spodoptera frugiperdaJE Smith (Lepidoptera: Noctuidae), and clarify the role of temperature in governing the expression of these alkaloids. The dry weights and survival of fall armyworms feeding on endophyte-infected tall fescue or perennial ryegrass were significantly lower than for those feeding on uninfected grass, whereas endophyte infection had no significant influence on survival. For tall fescue, a four-alkaloid model consisting of a plant alkaloid, perloline, and the fungal alkaloids ergonovine chanoclavine, and ergocryptine, explained 47% of the variation in fall armyworm dry weight, whereas a three-alkaloid model consisting of the plant alkaloid perloline methyl ether and the fungal alkaloids ergonovine and ergocryptine explained 70% of the variation in fall armyworm dry weight on perennial ryegrass. Although temperature had a significant influence on overall alkaloid expression in both grasses, the influence of temperature on individual alkaloids varied over time. The levels of those alkaloids most closely linked to armyworm performance increased linearly or curvilinearly with increasing temperature during the last 2 months of the study. We conclude that the growth temperature of grasses can influence the performance of fall armyworm, and that this effect may be mediated through a set of plant- and endophyte-related alkaloids. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
00138703
Volume :
115
Issue :
3
Database :
Academic Search Index
Journal :
Entomologia Experimentalis et Applicata
Publication Type :
Academic Journal
Accession number :
17131569
Full Text :
https://doi.org/10.1111/j.1570-7458.2005.00303.x