Back to Search Start Over

It’s About Time: Jet Interactions in an Asymmetrical Plenum.

Authors :
Strasser, Wayne
Kacinski, Robert
Wilson, Daniel
Petrov, Victor
Manera, Annalisa
Source :
Nuclear Technology. Sep2023, p1-27. 27p. 28 Illustrations, 9 Charts.
Publication Year :
2023

Abstract

Abstract Hybrid Reynolds-Averaged Navier-Stokes–Large Eddy Simulation was used to reveal detailed flow information and timescales in an isothermal reactor cavity cooling system plenum four-jet configuration. Plenum asymmetry and nonuniformity work together to cause premature jet merging. Bulk stirring in the plenum causes lateral jet vortex shedding, strong jet-jet interactions, swirl, and premature confluence. Two dominant transient modes exist: a jet flow timescale and then a plenum circulation timescale that is nearly three orders of magnitude larger. A primary consequence is that frequencies far less than the presumed 10 Hz threshold for thermal striping are pervasive. A second result is that scale-resolved computational fluid dynamics (CFD) models (as well as experimental rigs) need hundreds of seconds of statistically stationary flow time (tens of thousands of jet timescales) to produce stationary time averages. Fluid typically arrives at positions on the laser sheet in less time than it spends at those positions fluctuating in the streamwise and lateral directions. Also, a previously undocumented, but experimentally confirmed, vortex trap was identified via CFD. Finally, two-point velocity correlation analyses demonstrated a few dozen strong correlations across positions on the laser sheet. Expected close-proximity correlations emerged, but others across larger spaces also were connected. Most of these correlated at timescales close to that of the jet. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
00295450
Database :
Academic Search Index
Journal :
Nuclear Technology
Publication Type :
Academic Journal
Accession number :
171384281
Full Text :
https://doi.org/10.1080/00295450.2023.2238156