Back to Search Start Over

Analysis of the initial reaction mechanism of TKX-50 based on Raman intensity.

Authors :
Yang, Lei
Liu, Wen-Lang
Liu, Qi-Jun
Liu, Fu-Sheng
Liu, Zheng-Tang
Zheng, Wei
Source :
Journal of Molecular Modeling. Sep2023, Vol. 29 Issue 9, p1-7. 7p.
Publication Year :
2023

Abstract

Context: Dihydroxylammonium 5,5'-biotetrazolium-1,1'-diolate (TKX-50) has two important properties of typical azole energy-containing ionic salts, including high energy and safety. Therefore, in today's era where more emphasis is placed on explosive performance and explosive detonation control conditions, TKX-50 is a very important object of research, and its reaction process in the initial stage of detonation is gradually receiving more and more attention from researchers in the field of energy-containing materials research. Methods: In this paper, based on first-principles density-functional theory (DFT), the mechanism of chemical bond breakage of TKX-50 under pressure was determined based on the analysis of the strength and stability of chemical bonds inside the TKX-50 molecules using Raman spectroscopy relative intensity analysis. The results show that TKX-50 is dominated by N–H bond breaking and followed by H–O bond breaking in the initial reaction stage. These reactions lead to the reorganization and structural changes within the molecule, which eventually lead to the decomposition of TKX-50. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
16102940
Volume :
29
Issue :
9
Database :
Academic Search Index
Journal :
Journal of Molecular Modeling
Publication Type :
Academic Journal
Accession number :
171993407
Full Text :
https://doi.org/10.1007/s00894-023-05681-7