Back to Search Start Over

Renal tubular function and morphology revealed in kidney without labeling using three-dimensional dynamic optical coherence tomography.

Authors :
Mukherjee, Pradipta
Fukuda, Shinichi
Lukmanto, Donny
Tran, Thi Hang
Okada, Kosuke
Makita, Shuichi
El-Sadek, Ibrahim Abd
Lim, Yiheng
Yasuno, Yoshiaki
Source :
Scientific Reports. 9/15/2023, Vol. 13 Issue 1, p1-14. 14p.
Publication Year :
2023

Abstract

Renal tubule has distinct metabolic features and functional activity that may be altered during kidney disease. In this paper, we present label-free functional activity imaging of renal tubule in normal and obstructed mouse kidney models using three-dimensional (3D) dynamic optical coherence tomography (OCT) ex vivo. To create an obstructed kidney model, we ligated the ureter of the left kidney for either 7 or 14 days. Two different dynamic OCT (DOCT) methods were implemented to access the slow and fast activity of the renal tubules: a logarithmic intensity variance (LIV) method and a complex-correlation-based method. Three-dimensional DOCT data were acquired with a 1.3 μ m swept-source OCT system and repeating raster scan protocols. In the normal kidney, the renal tubule appeared as a convoluted pipe-like structure in the DOCT projection image. Such pipe-like structures were not observed in the kidneys subjected to obstruction of the ureter for several days. Instead of any anatomical structures, a superficial high dynamics appearance was observed in the perirenal cortex region of the obstructed kidneys. These findings suggest that volumetric LIV can be used as a tool to investigate kidney function during kidney diseases. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
20452322
Volume :
13
Issue :
1
Database :
Academic Search Index
Journal :
Scientific Reports
Publication Type :
Academic Journal
Accession number :
171993895
Full Text :
https://doi.org/10.1038/s41598-023-42559-3