Skip to search Skip to main content
  • About Us
    Vision Our Story Technology Focus Areas Our Team
  • Access
    Policies Guides Events COVID-19 Advisory
  • Collections
    Books & Journals A-Z listing Special Collections
  • Contact Us
  1. Jio Institute Digital Library
  2. Searchworks

Searchworks

Select search scope, currently: Articles
  • Catalog
    books, media & more in Jio Institute collections
  • Articles
    journal articles & other e-resources

Help
Contact
Covid-19 Advisory
Policies
  • Bookmarks 0
  • Search history
  • Sign in

Cite

The maximum number of triangles in [formula omitted]-free graphs.

MLA

Zhu, Xiutao, et al. “The Maximum Number of Triangles in [Formula Omitted]-Free Graphs.” European Journal of Combinatorics, vol. 114, Dec. 2023, p. N.PAG. EBSCOhost, https://doi.org/10.1016/j.ejc.2023.103793.



APA

Zhu, X., Chen, Y., Gerbner, D., Győri, E., & Karim, H. H. (2023). The maximum number of triangles in [formula omitted]-free graphs. European Journal of Combinatorics, 114, N.PAG. https://doi.org/10.1016/j.ejc.2023.103793



Chicago

Zhu, Xiutao, Yaojun Chen, Dániel Gerbner, Ervin Győri, and Hilal Hama Karim. 2023. “The Maximum Number of Triangles in [Formula Omitted]-Free Graphs.” European Journal of Combinatorics 114 (December): N.PAG. doi:10.1016/j.ejc.2023.103793.

Contact
Covid-19 Advisory
Policies
About Us
Academics
Research
Campus Life
Contact
T&C
Privacy Policy