Back to Search Start Over

An Investigation of a Northeast U.S. Cyclone Event without Well-Defined Snow Banding during IMPACTS.

Authors :
Colle, Brian A.
Yeh, Phillip
Finlon, Joseph A.
McMurdie, Lynn
McDonald, Victoria
DeLaFrance, Andrew
Source :
Monthly Weather Review. Sep2023, Vol. 151 Issue 9, p2465-2484. 20p. 3 Charts, 8 Graphs, 6 Maps.
Publication Year :
2023

Abstract

On 7 February 2020 a relatively deep cyclone (∼980 hPa) with midlevel frontogenesis produced heavy snow (20–30 mm liquid equivalent) over western and central New York State. Despite these characteristics, the precipitation was not organized into a narrow band of intensive snowfall. This event occurred during the Investigation of Microphysics and Precipitation for Atlantic Coast-Threatening Snowstorms (IMPACTS) field campaign. Using coordinated flight legs across New York State, a remote sensing aircraft (ER-2) sampled above the cloud, while a P-3 aircraft collected in-cloud data. These data are used to validate several Weather Research and Forecasting (WRF) Model simulations at 2- and 0.67-km grid spacing using different initial and boundary conditions (RAP, GFS, and ERA5 analyses) and microphysics schemes (Thompson and P3). The differences between the WRF runs are used to explore sensitivity to initial conditions and microphysics schemes. All 18–24-h runs realistically produced a broad sloping region of frontogenesis at midlevels typically; however, there were relatively large (20%–30%) uncertainties in the magnitude of this forcing using different analyses and initialization times. The differences in surface precipitation distribution are small (<10%) among the microphysics schemes, likely because there was little riming in the region of heaviest precipitation. Those runs with frontogenesis closest to the RAP analysis and a surface precipitation underprediction of 20%–30% have too little ice aloft and at low levels, suggesting deficiencies in ice generation and snow growth aloft in those runs. The 0.67-km grid produced more realistic convective cells aloft, but only 5%–10% more precipitation than the 2-km grid. Significance Statement: Heavy snowfall from U.S. East Coast winter storms can cause major societal problems, yet few studies have investigated these storms using field observations and model data. This study focuses on the 7 February 2020 event, where 20–40 cm of snow fell over west-central New York. Our analysis shows a broad region of ascent, rather than a concentrated region favoring a well-defined snowband was the primary process contributing to snowfall. Last, model microphysics were validated within this storm using the in situ aircraft data. Errors in the snow generation aloft and snow growth at low levels likely contributed to the simulated surface precipitation underprediction, but most of the forecast uncertainty is from initial conditions for this short-term (∼24-h lead time) forecast. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
00270644
Volume :
151
Issue :
9
Database :
Academic Search Index
Journal :
Monthly Weather Review
Publication Type :
Academic Journal
Accession number :
172357219
Full Text :
https://doi.org/10.1175/MWR-D-22-0296.1