Back to Search Start Over

Delineating Management Zones with Different Yield Potentials in Soybean–Corn and Soybean–Cotton Production Systems.

Authors :
Speranza, Eduardo Antonio
Naime, João de Mendonça
Vaz, Carlos Manoel Pedro
Santos, Júlio Cezar Franchini dos
Inamasu, Ricardo Yassushi
Lopes, Ivani de Oliveira Negrão
Queirós, Leonardo Ribeiro
Rabelo, Ladislau Marcelino
Jorge, Lucio André de Castro
Chagas, Sergio das
Schelp, Mathias Xavier
Vecchi, Leonardo
Source :
AgriEngineering. Sep2023, Vol. 5 Issue 3, p1481-1497. 17p.
Publication Year :
2023

Abstract

The delineation of management zones is one of the ways to enable the spatially differentiated management of plots using precision agriculture tools. Over the years, the spatial variability of data collected from soil and plant sampling started to be replaced by data collected by proximal and orbital sensors. As a result, the variety and volume of data have increased considerably, making it necessary to use advanced computational tools, such as machine learning, for data analysis and decision-making support. This paper presents a methodology used to establish management zones (MZ) in precision agriculture by analyzing data obtained from soil sampling, proximal sensors and orbital sensors, in experiments carried out in four plots featuring soybean–cotton and soybean–corn crops, in Mato Grosso and Paraná states, Brazil. Four procedures were evaluated, using different input data sets for the MZ delineation: (I) soil attributes, including clay content, apparent electrical conductivity or fertility, along with elevation, yield maps and vegetation indices (VIs) captured during the peak crop biomass period; (II) soil attributes in conjunction with VIs demonstrating strong correlations; (III) solely VIs exhibiting robust correlation with soil attributes and yield; (IV) VIs selected via random forests to identify the importance of the variable for estimating yield. The results showed that the VIs derived from satellite images could effectively replace other types of data. For plots where the natural spatial variability can be easily identified, all procedures favor obtaining MZ maps that allow reductions of 40% to 70% in yield variance, justifying their use. On the other hand, in plots with low natural spatial variability and that do not have reliable yield maps, different data sets used as input do not help in obtaining feasible MZ maps. For areas where anthropogenic activities with spatially differentiated treatment are already present, the exclusive use of VIs for the delineation of MZs must be carried out with reservations. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
26247402
Volume :
5
Issue :
3
Database :
Academic Search Index
Journal :
AgriEngineering
Publication Type :
Academic Journal
Accession number :
172359324
Full Text :
https://doi.org/10.3390/agriengineering5030092