Back to Search Start Over

Hierarchically Porous Carbon Nanosheets from One-Step Carbonization of Zinc Gluconate for High-Performance Supercapacitors.

Authors :
Tian, Zhiwei
Weng, Zhangzhao
Xiao, Junlei
Wang, Feng
Zhang, Chunmei
Jiang, Shaohua
Source :
International Journal of Molecular Sciences. Sep2023, Vol. 24 Issue 18, p14156. 11p.
Publication Year :
2023

Abstract

Supercapacitors, with high energy density, rapid charge–discharge capabilities, and long cycling ability, have gained favor among many researchers. However, the universality of high-performance carbon-based electrodes is often constrained by their complex fabrication methods. In this study, the common industrial materials, zinc gluconate and ammonium chloride, are uniformly mixed and subjected to a one-step carbonization strategy to prepare three-dimensional hierarchical porous carbon materials with high specific surface area and suitable nitrogen doping. The results show that a specific capacitance of 221 F g−1 is achieved at a current density of 1 A g−1. The assembled symmetrical supercapacitor achieves a high energy density of 17 Wh kg−1, and after 50,000 cycles at a current density of 50 A g−1, it retains 82% of its initial capacitance. Moreover, the operating voltage window of the symmetrical device can be easily expanded to 2.5 V when using Et4NBF4 as the electrolyte, resulting in a maximum energy density of up to 153 Wh kg−1, and retaining 85.03% of the initial specific capacitance after 10,000 cycles. This method, using common industrial materials as raw materials, provides ideas for the simple preparation of high-performance carbon materials and also provides a promising method for the large-scale production of highly porous carbons. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
16616596
Volume :
24
Issue :
18
Database :
Academic Search Index
Journal :
International Journal of Molecular Sciences
Publication Type :
Academic Journal
Accession number :
172424405
Full Text :
https://doi.org/10.3390/ijms241814156