Back to Search Start Over

A comparative study of DNAPL migration and transformation in confined and unconfined groundwater systems.

Authors :
Shi, Junxiang
Chen, Xiaohui
Ye, Bo
Wang, Zhewen
Sun, Yuanyuan
Wu, Jichun
Guo, Hongyan
Source :
Water Research. Oct2023, Vol. 245, pN.PAG-N.PAG. 1p.
Publication Year :
2023

Abstract

• Development of a novel device and method for studying multiphase migration and transformation of organic pollutants. • Comparative analysis of DNAPL multiphase migration and transformation in unconfined and confined groundwater systems. • Validation of experimental results through numerical simulation of contaminated site. To explore the migration and transformation process of dense non-aqueous liquid (DNAPL) pollutants' multiphase flow, specifically nitrobenzene (NB), in confined groundwater (CG) versus unconfined groundwater (UG), a two-dimensional sandbox experimental device was designed and constructed. This involved constructing a vadose zone-UG- aquitard-CG structure, which was then subjected to different scenarios. Real-time analysis and numerical simulation methods were established and employed, with a particular focus on the detailed investigation results of actual contaminated site. The study found that when the same amount of NB was injected, the special structure of the CG layer resulted in a more pronounced reverse diffusion of NB in both the dissolved and NAPL phases. This was especially true for the dissolved phase, which was more likely to diffuse reversely. Meanwhile, CG did not directly interact with the vadose zone, and there was no loss of gas phase NB after the leakage in CG. As a result, higher concentrations of dissolved phase NB were generated, leading to the emergence of a larger area of NB contaminant plumes with CG flow. Importantly, the simulation study of the actual site and the laboratory experimental results were found to be validated, further validating the conclusion that direct leakage of NB into CG results in a higher concentration and larger area of dissolved phase contaminant plume, causing more serious pollution to the groundwater environment. [Display omitted] [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
00431354
Volume :
245
Database :
Academic Search Index
Journal :
Water Research
Publication Type :
Academic Journal
Accession number :
172973130
Full Text :
https://doi.org/10.1016/j.watres.2023.120649