Back to Search Start Over

Using entropy of snoring, respiratory effort and electrocardiography signals during sleep for OSA detection and severity classification.

Authors :
Bahr-Hamm, K.
Abriani, A.
Anwar, A.R.
Ding, H.
Muthuraman, M.
Gouveris, H.
Source :
Sleep Medicine. Nov2023, Vol. 111, p21-27. 7p.
Publication Year :
2023

Abstract

Obstructive sleep apnea (OSA) is a very prevalent disease and its diagnosis is based on polysomnography (PSG). We investigated whether snoring-sound-, very low frequency electrocardiogram (ECG-VLF)- and thoraco-abdominal effort- PSG signal entropy values could be used as surrogate markers for detection of OSA and OSA severity classification. The raw data of the snoring-, ECG- and abdominal and thoracic excursion signal recordings of two consecutive full-night PSGs of 86 consecutive patients (22 female, 53.74 ± 12.4 years) were analyzed retrospectively. Four epochs (30 s each, manually scored according to the American Academy of Sleep Medicine standard) of each sleep stage (N1, N2, N3, REM, awake) were used as the ground truth. Sampling entropy (SampEn) of all the above signals was calculated and group comparisons between the OSA severity groups were performed. In total, (86x4x5 =)1720 epochs/group/night were included in the training set as an input for a support vector machine (SVM) algorithm to classify the OSA severity classes. Analyses were performed for first- and second-night PSG recordings separately. Twenty-seven patients had mild (RDI = ≥ 5/h but <15/h), 21 patients moderate (RDI ≥15/h but <30/h) and 23 patients severe OSA (RDI ≥30/h). Fifteen patients had an RDI <5/h and were therefore considered non-OSA. Using SE on the above three PSG signal data and using a SVM pipeline, it was possible to distinguish between the four OSA severity classes. The best metric was snoring signal-SE. The area-under-the-curve (AUC) calculations showed reproducible significant results for both nights of PSG. The second night data were even more significant, with non-OSA (R) vs. light OSA (L) 0.61, R vs. moderate (M) 0.68, R vs. heavy OSA (H) 0.84, L vs. M 0.63, M vs. H 0.65 and L vs. H 0.82. The results were not confounded by age or gender. SampEn of either snoring-, very low ECG-frequencies- or thoraco-abdominal effort signals alone may be used as a surrogate marker to diagnose OSA and even predict OSA severity. More specifically, in this exploratory study snoring signal SampEn showed the greatest predictive accuracy for OSA among the three signals. Second night data showed even more accurate results for all three parameters than first-night recordings. Therefore, technologies using only parts of the PSG signal, e.g. sound-recording devices, may be used for OSA screening and OSA severity group classification. • The entropy of various PSG biosignals can be used to facilitate OSA diagnosis. • The Sampling entropy of the snoring signal on polysomnography accurately helps to diagnose and classify OSA. • Entropy analysis could replace the complex and costly PSG in the future. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
13899457
Volume :
111
Database :
Academic Search Index
Journal :
Sleep Medicine
Publication Type :
Academic Journal
Accession number :
172977817
Full Text :
https://doi.org/10.1016/j.sleep.2023.09.005