Back to Search Start Over

Chemoselective Three‐Component Geminal Cross Couplings of Dihaloalkanes with Cr Catalysis: Rapid Access to Tertiary and Quaternary Alkanes via a Metal–Carbene Intermediate.

Authors :
Wang, Sha
Long, Linhong
Zhang, Xiaoyu
Ling, Liang
Chen, Hui
Zeng, Xiaoming
Source :
Angewandte Chemie International Edition. 10/26/2023, Vol. 62 Issue 44, p1-8. 8p.
Publication Year :
2023

Abstract

Geminal cross couplings using multiple components enable the formation of several different bonds at one site in the building of tertiary and quaternary alkanes. Nevertheless, there are remaining issues of concern—cleavage of two geminal bonds and control of selectivity present challenges. We report here the geminal cross couplings of three components by reactions of dihaloalkanes with organomagnesium and chlorosilanes or alkyl tosylates by Cr catalysis, affording the formation of geminal C−C/C−Si or C−C/C−C bonds in the creation of tertiary and quaternary alkanes. The geminal couplings are catalyzed by low‐cost CrCl2, enabling the sluggishness of competitive Kumada‐type side couplings and homocouplings of Grignard reagents, in achieving high chemoselectivity. Experimental and theoretical studies indicate that two geminal C‐halide bonds are continuously cleaved by Cr to afford a metal carbene intermediate, which couples with a Grignard reagent, followed by silylation, in the formation of geminal C−C and C−Si bonds via a novel inner‐sphere radical coupling mechanism. These three‐component geminal cross couplings are value‐addition to the synthesis of commercial drugs and bioactive molecules in medicinal chemistry. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
14337851
Volume :
62
Issue :
44
Database :
Academic Search Index
Journal :
Angewandte Chemie International Edition
Publication Type :
Academic Journal
Accession number :
173097194
Full Text :
https://doi.org/10.1002/anie.202312856