Back to Search Start Over

Oxygen-Defective Bi2MoO6/g-C3N4 hollow tubulars S-scheme heterojunctions toward optimized photocatalytic performance.

Authors :
Wang, Yizhu
Xing, Zipeng
Yang, Yi
Kong, Weifeng
Wu, Chunxu
Peng, Hui
Li, Zhenzi
Xie, Ying
Zhou, Wei
Source :
Journal of Colloid & Interface Science. Jan2024:Part B, Vol. 653, p1566-1576. 11p.
Publication Year :
2024

Abstract

Oxygen-defective Bi 2 MoO 6 /g-C 3 N 4 hollow tubulars S-scheme heterojunctions are fabricated by hydrothermal and calcination methods and show excellent photocatalytic performance. The S-Scheme heterojunction accelerates the effective charge separation and transfer by internal electric field (IEF) and energy band bending at the interface, thus improving the photocatalytic performance. [Display omitted] Novel S-scheme heterojunction photocatalysts of bismuth molybdate/hollow tube graphite carbon nitride (Bi 2 MoO 6 SOVs/g-C 3 N 4) containing surface defects (SOVs) were prepared by calcination and hydrothermal methods. The hollow tubular structure of g-C 3 N 4 facilitates the enhancement of multiple reflection and scattering of light, and also have a larger range of specific surface areas and more reactive sites, which promotes carrier separation and thus improves photocatalytic performance. The introduction of SOVs to bismuth molybdate not only reduces the band gap of bismuth molybdate, but also promotes the separation of charges. The optimized Bi 2 MoO 6 SOVs/TCN photocatalyst has a hydrogen production efficiency of 2.29 mmol h−1 g−1. It also shows high photocatalytic degradation property of tetracycline and bisphenol A in water, up to 97.3 % and 98.9 %, respectively. Meanwhile, the transfer mechanism of photogenerated charges in S-scheme heterojunctions can be verified by electron paramagnetic resonance and in situ irradiated x-ray photoelectron spectroscopy electron paramagnetic resonance, which accelerated the separation and transfer of photogenerated charge by energy band bending at the interface and internal electric field. This rational structural design strategy provides a new development idea for building high-performance S-scheme heterojunction photocatalysts. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
00219797
Volume :
653
Database :
Academic Search Index
Journal :
Journal of Colloid & Interface Science
Publication Type :
Academic Journal
Accession number :
173119164
Full Text :
https://doi.org/10.1016/j.jcis.2023.09.152