Back to Search Start Over

An open GIS based 3D simulation software to predict cooling tower drift diffusion.

Authors :
Wang, Xuan
Lv, Minghua
Liu, Shuhuan
Li, Jing
Zhang, Junfang
Meng, Fanjun
Source :
Scientific Reports. 10/24/2023, Vol. 13 Issue 1, p1-21. 21p.
Publication Year :
2023

Abstract

This paper developed XJCT-3D, a simulation software for cooling tower wet plume dispersion. By coupling it with the Open GIS component Dotspatial, we have achieved geospatial visual representation of the calculation results, which has solved the problems of low calculation efficiency and insufficient visual representation of the traditional CFD software in the calculation of cooling tower wet plume dispersion. In order to verify the validity of the XJCT-3D software simulation results, we have conducted tracer experimental data from the ChalkPoint power plant. XJCT-3D accurately models wet plume deposition during cooling tower operation. From the XJCT-3D calculation results, we have observed that the maximum value of the cooling tower thermal plume wet deposition occurs near 610 m with a maximum value of 6.9E−07 kg/m2 s. This finding suggests that the cooling tower emissions carry a significant load of particles or droplets that have settled on surfaces at this particular altitude. It provides insights into potential environmental and human health impacts and helps in identifying and assessing areas at relatively higher risk of deposition, such as nearby ecosystems, farmland, or urban areas. This information can contribute to the development of effective mitigation strategies and the implementation of appropriate measures to minimize the impact of cooling tower emissions. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
20452322
Volume :
13
Issue :
1
Database :
Academic Search Index
Journal :
Scientific Reports
Publication Type :
Academic Journal
Accession number :
173150684
Full Text :
https://doi.org/10.1038/s41598-023-45293-y