Back to Search Start Over

Systems biology of industrial oxytetracycline production in Streptomyces rimosus: the secrets of a mutagenized hyperproducer.

Authors :
Beganovic, Selma
Rückert-Reed, Christian
Sucipto, Hilda
Shu, Wei
Gläser, Lars
Patschkowski, Thomas
Struck, Ben
Kalinowski, Jörn
Luzhetskyy, Andriy
Wittmann, Christoph
Source :
Microbial Cell Factories. 10/28/2023, Vol. 22 Issue 1, p1-24. 24p.
Publication Year :
2023

Abstract

Background: Oxytetracycline which is derived from Streptomyces rimosus, inhibits a wide range of bacteria and is industrially important. The underlying biosynthetic processes are complex and hinder rational engineering, so industrial manufacturing currently relies on classical mutants for production. While the biochemistry underlying oxytetracycline synthesis is known to involve polyketide synthase, hyperproducing strains of S. rimosus have not been extensively studied, limiting our knowledge on fundamental mechanisms that drive production. Results: In this study, a multiomics analysis of S. rimosus is performed and wild-type and hyperproducing strains are compared. Insights into the metabolic and regulatory networks driving oxytetracycline formation were obtained. The overproducer exhibited increased acetyl-CoA and malonyl CoA supply, upregulated oxytetracycline biosynthesis, reduced competing byproduct formation, and streamlined morphology. These features were used to synthesize bhimamycin, an antibiotic, and a novel microbial chassis strain was created. A cluster deletion derivative showed enhanced bhimamycin production. Conclusions: This study suggests that the precursor supply should be globally increased to further increase the expression of the oxytetracycline cluster while maintaining the natural cluster sequence. The mutagenized hyperproducer S. rimosus HP126 exhibited numerous mutations, including large genomic rearrangements, due to natural genetic instability, and single nucleotide changes. More complex mutations were found than those typically observed in mutagenized bacteria, impacting gene expression, and complicating rational engineering. Overall, the approach revealed key traits influencing oxytetracycline production in S. rimosus, suggesting that similar studies for other antibiotics could uncover general mechanisms to improve production. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
14752859
Volume :
22
Issue :
1
Database :
Academic Search Index
Journal :
Microbial Cell Factories
Publication Type :
Academic Journal
Accession number :
173272050
Full Text :
https://doi.org/10.1186/s12934-023-02215-x