Back to Search Start Over

In-situ monitoring of thiazine molecular aggregation in various solvents via a free-standing acoustic levitator.

Authors :
Park, Juhyeon
Min, Ahreum
Naik, Shreyanka Shankar
Moon, Cheol Joo
Theerthagiri, Jayaraman
Choi, Myong Yong
Source :
Ultrasonics Sonochemistry. Nov2023, Vol. 100, pN.PAG-N.PAG. 1p.
Publication Year :
2023

Abstract

• Free-standing acoustic levitator technique for organic dye self-aggregation process. • Methylene blue (MB) droplet aggregation via acoustic standing waves. • MB dimerization reactions monitored by in situ spectroscopic techniques. • H- and J-aggregation in different solvent environments was studied by DFT studies. In this work, we explored the in-situ reaction modeling of the molecular self-aggregation of methylene blue (MB), which is a cationic thiazine dye, in different solvents via a container-less acoustic levitator by floating of a single droplet. Our in-situ spectroscopic study revealed that the dimer essentially has a sandwich structural geometry with a deviation from parallel stacking and horizontal arrangements in the molecular planes. The real time conversion of the monomer in MB into a dimer and their dynamics in water and ethanol media were monitored using a free-standing acoustic levitator droplet system. The absorption spectra revealed changes in the two resolved peaks (monomer and dimer) and orderliness when water and ethanol were used as the media. Interestingly, the enhancement in the dimerization of MB could be attributed to droplet evaporation, which is difficult to observe in typical reactor containers. Moreover, acidic protonation resulted in a change in the aggregation orientation direction of the MB molecules, forming an unusual J-aggregation. Theoretical DFT calculations revealed that MB underwent typical H-aggregation and J-aggregation in the different solvent environments, and their orientations well matched the spectroscopic data. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
13504177
Volume :
100
Database :
Academic Search Index
Journal :
Ultrasonics Sonochemistry
Publication Type :
Academic Journal
Accession number :
173343368
Full Text :
https://doi.org/10.1016/j.ultsonch.2023.106609