Back to Search Start Over

Enhancing Brain Tumor Detection on MRI Images Using an Innovative VGG-19 Model-Based Approach.

Authors :
ŞENER, Abdullah
ERGEN, Burhan
Source :
Sakarya University Journal of Science (SAUJS) / Sakarya Üniversitesi Fen Bilimleri Enstitüsü Dergisi. Oct2023, Vol. 27 Issue 5, p1128-1140. 13p.
Publication Year :
2023

Abstract

Early detection and diagnosis of brain tumors have a critical impact on the treatment of brain tumor patients. This is because initiating interventions early directly impacts the patient's chances of continuing their life. In the field of medical research, various methods are employed for the detection of brain tumors. Among these methods, magnetic resonance imaging (MRI) is the most popular due to its superior image quality. By leveraging technological advancements, the utilization of deep learning techniques in the identification of brain tumors ensures both high accuracy and simplification of the process. In a conducted study, a new model was developed by utilizing the VGG-19 architecture, a popular convolutional neural network model, to achieve high accuracy in brain tumor detection. In the study, precision, F1 score, accuracy, specificity, Matthews correlation coefficient, and recall metrics were used to evaluate the performance of the developed model. The deep learning model developed for brain tumor detection was trained and evaluated on an open-source dataset consisting of MRI images of gliomas, meningiomas, pituitary tumors, and healthy brains. The results obtained from the study demonstrate the promising potential of using the developed model in clinical applications for brain tumor detection. The high accuracy achieved by the developed model emphasizes its potential as an auxiliary resource for healthcare professionals in brain tumor detection. This research aims to evaluate the model as a valuable tool that can assist physicians in making informed treatment decisions regarding brain tumor diagnosis. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
13014048
Volume :
27
Issue :
5
Database :
Academic Search Index
Journal :
Sakarya University Journal of Science (SAUJS) / Sakarya Üniversitesi Fen Bilimleri Enstitüsü Dergisi
Publication Type :
Academic Journal
Accession number :
173376437
Full Text :
https://doi.org/10.16984/saufenbilder.1302803