Back to Search Start Over

Nanoassemblies Derived from Natural Flavonoid Compounds as New Antioxidant Oral Preparations for Targeted Inflammatory Bowel Disease Therapy.

Authors :
Tang, Nan
Ding, Zhen
Zhang, Siqi
Luo, Danfeng
Liu, Xiaocan
Bao, Xingfu
Liu, Chaoyong
Liu, Zhen
Source :
Advanced Functional Materials. 11/2/2023, Vol. 33 Issue 45, p1-15. 15p.
Publication Year :
2023

Abstract

Possessing the largest surface area of mucosa in the body, the gastrointestinal (GI) tract can easily sufferfrom inflammatory damage under various adverse external exposures, resulting in the occurrence of inflammatory bowel disease (IBD). Excessive reactive oxygen species (ROS) usually lead to local mucosal injury, accelerate the formation of niduses, andamplify the inflammatory and immune response. Antioxidant therapy, therefore, is considered as a potential strategy against IBDs. Herein, a series of novel dihydromyricetin‐based nanoassemblies with excellent antioxidant activities and high dispersion in GI tract as oral preparations are developed for the targeted IBD treatment. By changing raw materials, the current strategy can be well extended to the preparation of other insoluble natural flavonoid compound‐based nanoassemblies. The well‐designed dihydromyricetin‐PEG 1000‐based nanoassemblies (DMY‐1000 NAs) with high stability and great ROS scavenging capacity in the harsh environment of GI tract hold an admirable targeted capability toward the intestinal inflamed lesions. Therefore, these biocompatible DMY‐1000 NAs show promising therapeutic effects for typical IBDs including ulcerative colitis and Crohn's disease in murine models. This study not only provides a new method for constructing antioxidant therapy platforms but also illustrates their prominent therapeutic promise against IBDs. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
1616301X
Volume :
33
Issue :
45
Database :
Academic Search Index
Journal :
Advanced Functional Materials
Publication Type :
Academic Journal
Accession number :
173397889
Full Text :
https://doi.org/10.1002/adfm.202305133