Back to Search Start Over

One-step paper-based SlipChip for the sensitive detection of C-reactive protein with porous platinum nanozyme-assisted signal amplification.

Authors :
Son, Seong Eun
Cheon, Se Hwa
Hur, Won
Lee, Han Been
Kim, Do Hyeon
Ha, Chang Hyeon
Lee, Su Jeong
Han, Do Kyoung
Seong, Gi Hun
Source :
Biosensors & Bioelectronics. Jan2024, Vol. 243, pN.PAG-N.PAG. 1p.
Publication Year :
2024

Abstract

The development of efficient and sensitive point-of-care testing is crucial for preparedness in the post-pandemic era. Although paper-based lateral flow assays have attracted attention and have various advantages for rapid, on-site diagnosis, they have low sensitivity. To overcome the limitations of the existing assays, in this study, we aimed to develop a new, one-step, nanozyme-amplified SlipChip for the sensitive detection of C-reactive protein (CRP). The SlipChip was constructed by combining wax-printed paper with different channel designs. The three-dimensional (3D) fluidic configuration of the SlipChip allowed for the sequential delivery of reagents, enabling mixing and signal amplification with a one-step sliding operation. As a signal-amplifying reagent, peroxidase-mimicking porous platinum nanozyme (pPtNZ) was synthesized using a simple wet chemical method. The pPtNZ conjugated on the test line catalyzes the oxidation of diaminobenzidine (DAB) in the presence of hydrogen peroxide, increasing the color intensity. The immunoassay results of the SlipChip were easily interpreted within 20 min, and the color intensity was visually enhanced by DAB precipitation over time, resulting in up to 6-fold signal amplification. The proposed pPtNZ-SlipChip exhibited high analytical performances for the one-step detection of serum and salivary CRP from 0.1 to 1000 ng/mL, with a limit of detection of 0.03 ng/mL. These results revealed the potential and applicability of the pPtNZ-SlipChip, with the advantages of simplicity, sensitivity, low cost, and portability for on-site detection and point-of-care testing. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
09565663
Volume :
243
Database :
Academic Search Index
Journal :
Biosensors & Bioelectronics
Publication Type :
Academic Journal
Accession number :
173415536
Full Text :
https://doi.org/10.1016/j.bios.2023.115752