Back to Search Start Over

Transcriptome analysis reveals the mechanism of nitrogen fertilizers in starch synthesis and quality in waxy and non-waxy proso millet.

Authors :
Wang, Honglu
Zhang, Hui
Liu, Jiajia
Ma, Qian
Wu, Enguo
Gao, Jinfeng
Yang, Qinghua
Feng, Baili
Source :
Carbohydrate Polymers. Jan2024, Vol. 323, pN.PAG-N.PAG. 1p.
Publication Year :
2024

Abstract

Recent findings suggest that optimal application of nitrogen fertilizers can effectively improve the quality of proso millet (PM). Here, we aimed to investigate the pathways associated with starch synthesis and metabolism to elucidate the effect and molecular mechanisms of nitrogen fertilization in starch synthesis and properties in waxy and non-waxy PM varieties using transcriptomic techniques. Co-expression network analysis revealed that the regulation of starch synthesis and quality in PM by nitrogen fertilizer mainly occurred in the S2 and S3 stages during grain filling. Nitrogen fertilization inhibited glycolysis/gluconeogenesis and starch biosynthesis in grains, but increased starch degradation to maltose and dextrin and then to glucose. Moreover, nitrogen fertilization increased starch accumulation by upregulating the expression of SuS and malZ genes, thereby increasing the total starch content in grains. In contrast, nitrogen fertilization suppressed the expression of GBSS gene and decreased amylose content in PM grains, resulting in a relatively higher crystallinity, light transmittance, and breakdown viscosity in the two PM varieties. Overall, these results provided transcriptomics insights into the molecular mechanisms by which nitrogen fertilization regulates starch quality in PM, identified key genes that associated with the starch properties, and provided new insights into the quality cultivation of PM. [Display omitted] [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
01448617
Volume :
323
Database :
Academic Search Index
Journal :
Carbohydrate Polymers
Publication Type :
Academic Journal
Accession number :
173458547
Full Text :
https://doi.org/10.1016/j.carbpol.2023.121372