Back to Search Start Over

Mirror‐Coupled Plasmonic Bound States in the Continuum for Tunable Perfect Absorption.

Authors :
Wang, Juan
Weber, Thomas
Aigner, Andreas
Maier, Stefan A.
Tittl, Andreas
Source :
Laser & Photonics Reviews. Nov2023, Vol. 17 Issue 11, p1-10. 10p.
Publication Year :
2023

Abstract

Tailoring critical light‐matter coupling is a fundamental challenge of nanophotonics, impacting fields from higher harmonic generation and energy conversion to surface‐enhanced spectroscopy. Plasmonic perfect absorbers (PAs), where resonant antennas couple to their mirror images in adjacent metal films, excel at obtaining different coupling regimes by tuning the antenna‐film gap size. However, practical PA applications require constant gap size, making it impossible to maintain critical coupling beyond singular wavelengths. Here, a new approach for plasmonic PAs is introduced by combining mirror‐coupled resonances with the unique loss engineering capabilities of plasmonic quasi‐bound states in the continuum. This novel combination allows to tailor the light–matter interaction within the under‐coupling, over‐coupling, and critical coupling regimes using flexible tuning knobs including asymmetry parameter, dielectric gap, and geometrical scaling factor. The study demonstrates a pixelated PA metasurface with optimal absorption over a broad range of mid‐infrared wavenumbers (950–2000 cm−1) using only a single gap size and applies it for multispectral surface‐enhanced molecular spectroscopy. Moreover, the asymmetry parameter enables convenient adjustment of the quality factor and resonance amplitude. This concept expands the capabilities and flexibility of traditional gap‐tuned PAs, opening new perspectives for miniaturized sensing platforms towards on‐chip and in situ detection. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
18638880
Volume :
17
Issue :
11
Database :
Academic Search Index
Journal :
Laser & Photonics Reviews
Publication Type :
Academic Journal
Accession number :
173486360
Full Text :
https://doi.org/10.1002/lpor.202300294