Back to Search
Start Over
Changes in the physiological activity of parenchyma cells in Dalbergia odorifera xylem and its relationship with heartwood formation.
- Source :
-
BMC Plant Biology . 11/13/2023, Vol. 23 Issue 1, p1-10. 10p. - Publication Year :
- 2023
-
Abstract
- Background: The formation of a tree's heartwood gives the wood properties such as natural decay resistance and aesthetic color, and often directly determines the value of wood products. Regulating the quantity and quality of heartwood is of great importance to the use of wood. However, the mechanism of heartwood formation has been poorly understood. Results: Using Dalbergia odorifera as the study species, the number of starch grains, the morphology of the nuclei, the changes in the content of water and secondary metabolites were observed continuously in the radial direction of the xylem. The results show that from the outer toward inner sapwood, the starch grains are abundant, the length to diameter ratio of the nuclei is decreasing, and the morphology changes from elongated elliptical and then to round. In the outer transition zone, the starch grains begin to decrease abruptly and the nuclei shrink at a slower rate, with a radial width of approximately 2 mm. In the inner transition zone, the heartwood color begins to appear, the starch grains disappear and a few nuclei with reduced fluorescence are present, with a radial width of approximately 1 mm. Heartwood formation after complete disappearance of the nuclei. The moisture content of the heartwood is higher than that of the sapwood, and the inner transition zone is where the content rises. The secondary metabolites of the heartwood begin to accumulate in large quantities in the inner transition zone. Conclusion: Based on the physiological changes of parenchyma cells in the xylem, the radial width of the transition zone of Dalbergia odorifera is clearly defined as approximately 3 mm. Both the water and secondary metabolite abrupt changes occur at the final stage of programmed cell death, and neither is a direct cause of programmed cell death in parenchyma cells. [ABSTRACT FROM AUTHOR]
- Subjects :
- *XYLEM
*HEARTWOOD
*APOPTOSIS
*WOOD products
*WOOD
*METABOLITES
*WOOD chemistry
Subjects
Details
- Language :
- English
- ISSN :
- 14712229
- Volume :
- 23
- Issue :
- 1
- Database :
- Academic Search Index
- Journal :
- BMC Plant Biology
- Publication Type :
- Academic Journal
- Accession number :
- 173584543
- Full Text :
- https://doi.org/10.1186/s12870-023-04592-2