Back to Search Start Over

Discovery and biological evaluation of a potent small molecule CRM1 inhibitor for its selective ablation of extranodal NK/T cell lymphoma.

Authors :
He Liu
Meisuo Liu
Xibao Tian
Haina Wang
Jiujiao Gao
Hanrui Li
Zhehuan Zhao
Yu Liu
Caigang Liu
Xuan Chen
Yongliang Yang
Source :
eLife. 11/10/2023, p1-12. 12p.
Publication Year :
2023

Abstract

Background: The overactivation of NF-1B signaling is a key hallmark for the pathogenesis of extranodal natural killer/T cell lymphoma (ENKTL), a very aggressive subtype of non-Hodgkin's lymphoma yet with rather limited control strategies. Previously, we found that the dysregulated exportin-1 (also known as CRM1) is mainly responsible for tumor cells to evade apoptosis and promote tumor-associated pathways such as NF-B signaling. Methods: Herein we reported the discovery and biological evaluation of a potent small molecule CRM1 inhibitor, LFS-1107. We validated that CRM1 is a major cellular target of LFS-1107 by biolayer interferometry assay (BLI) and the knockdown of CRM1 conferred tumor cells with resistance to LFS-1107. Results: We found that LFS-1107 can strongly suppresses the growth of ENKTL cells at low-range nanomolar concentration yet with minimal effects on human platelets and healthy peripheral blood mononuclear cells. Treatment of ENKTL cells with LFS-1107 resulted in the nuclear retention of IkBa and consequent strong suppression of NF-B transcriptional activities, NF-B target genes downregulation and attenuated tumor cell growth and proliferation. Furthermore, LFS-1107 exhibited potent activities when administered to immunodeficient mice engrafted with human ENKTL cells. Conclusions: Therefore, LFS-1107 holds great promise for the treatment of ENKTL and may warrant translation for use in clinical trials. Funding: Yang's laboratory was supported by the National Natural Science Foundation of China (Grant: 81874301), the Fundamental Research Funds for Central University (Grant: DUT22YG122) and the Key Research project of 'be Recruited and be in Command' in Liaoning Province (Personal Target Discovery for Metabolic Diseases). [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
2050084X
Database :
Academic Search Index
Journal :
eLife
Publication Type :
Academic Journal
Accession number :
173600660
Full Text :
https://doi.org/10.7554/eLife.80625