Back to Search Start Over

An unsupervised machine learning approach to reduce nonlinear FE[formula omitted] multiscale calculations using macro clustering.

Authors :
Chaouch, Souhail
Yvonnet, Julien
Source :
Finite Elements in Analysis & Design. Feb2024, Vol. 229, pN.PAG-N.PAG. 1p.
Publication Year :
2024

Abstract

Solving nonlinear multiscale methods with history-dependent behaviors and fine macroscopic meshes is a well-known challenge. In this work, an unsupervised machine learning-based clustering approach is developed to reduce nonlinear Multilevel Finite Element-FE 2 calculations. In contrast with most available techniques which aim at developing Reduced Order Models (ROM) or AI-based surrogate models for the microscale nonlinear problems, the present technique reduces the problem from the macro scale by creating clusters of macro Gauss points which are assumed to be in close mechanical states. Then, a single micro nonlinear Representative Volume Element (RVE) calculation is performed for each cluster. A linear approximation of the macro stress is used in each cluster. Handling internal variables is carried out by using anelastic macro strains in the clustering vectors in addition to the macro strains components. Finally, some convergence issues related to the use of clusters at the macro scale are addressed through a cluster freezing algorithm. The technique is applied to nonlinear hyperelastic, viscoelastic and elastoplastic composites. In contrast to available ROM or machine-learning -based acceleration techniques, the present method does not require neither preliminary off-line calculations, nor training, nor data base, nor reduced basis at the macro scale, while maintaining typical speed-up factors about 20 as compared to classical FE 2. • An unsupervised machine learning-based clustering approach is developed to reduce nonlinear FE2 calculations. • A linear approximation of the macro stress is used in each cluster. • Handling internal variables is carried out by using anelastic macro strains in the clustering vectors. • Finally, some convergence issues related to the use of clusters at the macro scale are addressed. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
0168874X
Volume :
229
Database :
Academic Search Index
Journal :
Finite Elements in Analysis & Design
Publication Type :
Academic Journal
Accession number :
173704071
Full Text :
https://doi.org/10.1016/j.finel.2023.104069