Back to Search Start Over

ELF5 drives angiogenesis suppression though stabilizing WDTC1 in renal cell carcinoma.

Authors :
Li, Tushuai
Xu, Longjiang
Wei, Zhe
Zhang, Shaomei
Liu, Xingyu
Yang, Yanzi
Gu, Yue
Zhang, Jie
Source :
Molecular Cancer. 11/18/2023, Vol. 22 Issue 1, p1-16. 16p.
Publication Year :
2023

Abstract

Background: Renal cell carcinoma (RCC) is a common malignant tumor of the urinary system. Angiogenesis is a main contributing factor for tumorigenesis. E74-like transcription factor 5 (ELF5) has been verified to participate in the progression of different cancers and can regulate angiogenesis. This study was aimed to explore the functions of ELF5 in RCC. Methods: Bioinformatics tools were used to predict the expression of ELF5 in RCC. RT-qPCR was applied for testing ELF5 expression in RCC cells. Cell behaviors were evaluated by colony formation, CCK-8, and transwell assays. The tube formation assay was used for determining angiogenesis. Methylation-specific PCR (MSP) was utilized for measuring the methylation level of ELF5 in RCC cells. ChIP and luciferase reporter assays were applied for assessing the binding of ELF5 and ubiquitin-specific protease 3 (USP3). Co-IP and GST pull-down were utilized for detecting the interaction of WD40 and tetratricopeptide repeats 1 (WDTC1) and USP3. Ubiquitination level of WDTC1 was determined by ubiquitination assay. Results: ELF5 was lowly expressed in RCC cells and tissues. High expression of ELF5 expression notably suppressed RCC cell proliferative, migratory, and invasive capabilities, and inhibited angiogenesis. The tumor growth in mice was inhibited by ELF5 overexpression. ELF5 was highly methylated in RCC samples, and DNA methyltransferases (DNMTs) can promote hypermethylation level of ELF5 in RCC cells. ELF5 was further proved to transcriptionally activate USP3 in RCC. Moreover, USP3 inhibited WDTC1 ubiquitination. ELF5 can promote USP3-mediated WDTC1 stabilization. Additionally, WDTC1 silencing reversed the functions of ELF5 overexpression on RCC progression. Conclusion: Downregulation of ELF5 due to DNA hypermethylation inhibits RCC development though the USP3/WDTC1axis in RCC. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
14764598
Volume :
22
Issue :
1
Database :
Academic Search Index
Journal :
Molecular Cancer
Publication Type :
Academic Journal
Accession number :
173721417
Full Text :
https://doi.org/10.1186/s12943-023-01871-2