Back to Search Start Over

Enhancing aerobic oxidation of C–H bonds through efficient catalysis of iron MOF–derived Fe3C nanoparticles embedded in porous carbon catalysts.

Authors :
Zhuang, Lei
Jian, Mingyuan
Xue, Ruifang
Li, Nan
Chen, Jie
Fu, Yanghe
Chen, De–Li
Zhu, Weidong
Zhang, Fumin
Source :
Applied Surface Science. Feb2024, Vol. 645, pN.PAG-N.PAG. 1p.
Publication Year :
2024

Abstract

[Display omitted] Developing efficient heterogeneous catalysts for the aerobic oxidation of C–H bonds using oxygen molecule as an oxidant to produce value–added aryl ketones is a challenging task. In this study, a series of cementite–iron–carbon composites (referred to as Fe–C–T, where T represents the pyrolysis temperature) were synthesized using a metal–organic–framework–mediated sacrificial template strategy. The Fe–C–T composites consist of highly dispersed Fe/(Fe 3 C or Fe 2 O 3) nanoparticles surrounded by graphitic carbon on porous carbon supports. Under mild reaction conditions (1 atm of O 2 pressure, 353 K, 12 h), with tert–butyl hydroperoxide (0.25 equiv.) as the initiator in a green solvent water, the prepared Fe–C–973 achieved a high conversion of 98.4 % for ethylbenzene and a selectivity of 98.7 % for acetophenone. This performance was markedly superior to the comparable Fe–C–873 and Fe–C–1073, as well as the commercially available Fe–based catalysts. Kinetic studies revealed that the catalytic system followed first–order kinetics for the substrate ethylbenzene, and the activation energy over Fe–C–973 was remarkably low of 40.4 kJ/mol. The highly distributed Fe 3 C nanoparticles embedded in the porous carbon framework were identified as the most active sites for the reaction. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
01694332
Volume :
645
Database :
Academic Search Index
Journal :
Applied Surface Science
Publication Type :
Academic Journal
Accession number :
173722836
Full Text :
https://doi.org/10.1016/j.apsusc.2023.158883