Back to Search Start Over

Cobalt oxide decorated 2D MXene: A hybrid nanocomposite electrode for high-performance supercapacitor application.

Authors :
Kunwar, Jyotendra
Acharya, Debendra
Chhetri, Kisan
Karki, Bibek
Deo, Bikash
Bhattarai, Roshan Mangal
Neupane, Shova
Adhikari, Mandira Pradhananga
Yadav, Amar Prasad
Source :
Journal of Electroanalytical Chemistry. Dec2023, Vol. 950, pN.PAG-N.PAG. 1p.
Publication Year :
2023

Abstract

[Display omitted] • This work explores MXene and cobalt oxide nanoparticle composites for supercapacitors. • The Co@MXene- composite exhibits a specific capacitance of 732.5 F g−1 at 1 A g−1. • The ASC device (Co@MXene-2//AC) demonstrates a maximum energy density of 26.6 Wh Kg−1 at 700 W Kg−1 power density. • Hierarchical MXene/transition metal oxide composite enhances electrochemical performance for energy storage. The 2D layered material, MXene has incited a lot of interest in energy storage research due to its high metallic conductivity, high hydrophilicity, high energy storage capability, biocompatibility, and excellent electrochemical activity due to rich surface chemistry. However, the restacking of MXene layers lowers the number of active sites in MXene, which in turn limits the use of MXene in supercapacitors. Furthermore, the narrow working potential window of MXene limits the energy density of the electrodes. To address these issues and improve the electrochemical performance of MXene, several hierarchical MXene/transition metal oxide composites have been synthesized and characterized. This work explores MXene and its composites with cobalt oxide nanoparticles for supercapacitor applications. The Co@MXene composite was synthesized by using a one-pot hydrothermal method. As prepared, the nanocomposite exhibited a specific capacitance of 732.5 F g−1 at 1 A g-1 current density and excellent cycling stability of 83% over 5000 cycles. The as-fabricated ASC device (Co@MXene-2//AC) demonstrates the maximum energy density of 26.6 Wh Kg−1 at 700 W Kg−1 power density. The above results illustrate that MXene/transition metal oxide nanocomposite can be an alternative to enhance electrochemical performance for energy storage applications. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
15726657
Volume :
950
Database :
Academic Search Index
Journal :
Journal of Electroanalytical Chemistry
Publication Type :
Academic Journal
Accession number :
173749454
Full Text :
https://doi.org/10.1016/j.jelechem.2023.117915