Back to Search Start Over

On the Cauchy problem for a four‐component Novikov system with peaked solutions.

Authors :
Wang, Haiquan
Chen, Miaomiao
Source :
Mathematical Methods in the Applied Sciences. Dec2023, Vol. 46 Issue 18, p19289-19328. 40p.
Publication Year :
2023

Abstract

Considered herein is the Cauchy problem for a four‐component Novikov system with peaked solutions. We first investigate the local Gevrey regularity and analyticity of the solutions by a generalized Ovsyannikov theorem. Then, based on the local well‐posedness of this problem, the results with respect to the nonuniformly continuous dependence on initial data of the solutions in Besov spaces B2,15/2(핋)2×B2,13/2(핋)2 and Bp,rs(ℝ)2×Bp,rs−1(ℝ)2(s>max{5/2,2+1/p},1≤p,r≤∞)$$ {\left({B}_{p,r}^s\left(\mathrm{\mathbb{R}}\right)\right)}^2\times {\left({B}_{p,r}^{s-1}\left(\mathrm{\mathbb{R}}\right)\right)}^2\left(s>\max \left\{5/2,2+1/p\right\},1\le p,r\le \infty \right) $$ are established by constructing new approximate solutions and initial data. [ABSTRACT FROM AUTHOR]

Subjects

Subjects :
*BESOV spaces
*CAUCHY problem

Details

Language :
English
ISSN :
01704214
Volume :
46
Issue :
18
Database :
Academic Search Index
Journal :
Mathematical Methods in the Applied Sciences
Publication Type :
Academic Journal
Accession number :
173778443
Full Text :
https://doi.org/10.1002/mma.9627