Back to Search
Start Over
Refinement of numerical radius inequalities of complex Hilbert space operators.
- Source :
-
Acta Scientiarum Mathematicarum . Nov2023, Vol. 89 Issue 3/4, p427-436. 10p. - Publication Year :
- 2023
-
Abstract
- We develop upper and lower bounds for the numerical radius of 2 × 2 off-diagonal operator matrices, which generalize and improve on some existing ones. We also show that if A is a bounded linear operator on a complex Hilbert space, then for all r ≥ 1 , w 2 r (A) ≤ 1 4 ‖ | A | 2 r + | A ∗ | 2 r ‖ + 1 2 min ‖ ℜ (| A | r | A ∗ | r) ‖ , w r (A 2) where w(A), ‖ A ‖ and ℜ (A) , respectively, stand for the numerical radius, the operator norm and the real part of A. This (for r = 1 ) improves on some existing well-known numerical radius inequalities. [ABSTRACT FROM AUTHOR]
- Subjects :
- *HILBERT space
Subjects
Details
- Language :
- English
- ISSN :
- 00016969
- Volume :
- 89
- Issue :
- 3/4
- Database :
- Academic Search Index
- Journal :
- Acta Scientiarum Mathematicarum
- Publication Type :
- Academic Journal
- Accession number :
- 173891247
- Full Text :
- https://doi.org/10.1007/s44146-023-00070-1