Back to Search Start Over

Research on Glazed Hollow Bead Insulation concrete freezing process with different saturation based on nuclear magnetic resonance.

Authors :
Zhang, Xiang
Zhu, Manhong
Niu, Yaqi
Liu, Shuyu
Jin, Zhuoyang
Wang, Chenxin
Liu, Yuanzhen
Wang, Wenjing
Jiang, Lu
Zhang, Yu
Source :
Construction & Building Materials. Dec2023, Vol. 409, pN.PAG-N.PAG. 1p.
Publication Year :
2023

Abstract

• The S cr of GIC-0, GIC-50 and GIC-100 are about 76–78%, 84–86% and 89–91%. • When S > S cr, the supercooling phenomenon of the adsorbed water is obvious. • S < Scr specimens have virtually no hysteresis curves during freeze–thaw cycles. • Saturation(S) and GHBs content affect the freezing process of water in concrete. • S and GHBs content affect pore size distribution during concrete freezing. This paper uses experimental analysis to understand the freezing law of water to determine the freezing damage mechanism of Glazed Hollow Bead Insulation Concrete (GIC). The critical saturations of GIC with different Glazed Hollow Beads (GHBs) contents were obtained by the relative moving modulus after testing seven saturations of the concrete (70% to 100%, 5% interval). The critical saturation of GIC-0 (i.e., 0% GHBs content) occurred at ∼ 76–78%. GIC-50 occurred at about 86–88%. GIC-100 occurred at about 89–91%. GIC-0, GIC-50, and GIC-100 were then saturated to S 60 , S cr , and S 100 based on their respective critical saturation. Low-field nuclear magnetic resonance (NMR) was used to study the freezing process of different water types in GIC. The results showed that: 1) The water inside GIC was composed of adsorb water, pore water, and free water; 2) The whole freezing process could be roughly divided into four stages: subcooling stage, rapid freezing stage, stable freezing stage, and the end of the freezing phase; 3) During the freezing and thawing process, the change in unfrozen water content of GIC specimens had a hysteresis curve, while the specimens less than the critical saturation had almost no hysteresis curve. Moreover, the saturation significantly influenced the freezing process of different water types, which determined the proportion of them. This study also determined the evolution of the pore size of GIC, which provides a new idea for analyzing the freezing damage mechanism of porous GIC. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
09500618
Volume :
409
Database :
Academic Search Index
Journal :
Construction & Building Materials
Publication Type :
Academic Journal
Accession number :
173970931
Full Text :
https://doi.org/10.1016/j.conbuildmat.2023.133634