Back to Search Start Over

Sodium bicarbonate-hydroxyapatite used for removal of lead ions from aqueous solution.

Authors :
Predoi, Silviu Adrian
Ciobanu, Steluta Carmen
Chifiriuc, Carmen Mariana
Iconaru, Simona Liliana
Predoi, Daniela
Negrila, Catalin Constantin
Marinas, Ioana Cristina
Raaen, Steinar
Rokosz, Krzysztof
Motelica-Heino, Mikael
Source :
Ceramics International. Jan2024:Part B, Vol. 50 Issue 1, p1742-1755. 14p.
Publication Year :
2024

Abstract

This study reports the development of a novel biocomposite for potential applications in the environmental remediation. The hydroxyapatite/sodium bicarbonate (HAp-SB) biocomposite obtained by a cheap method could offer promising characteristics to be used in environmental applications. The obtaining of HAp-SB ceramic composites was studied with the aim of increasing the adsorption efficiency of lead ions from contaminated waters. A composite material (HAp-SB) with good crystallinity that preserves the hexagonal structure of pure hydroxyapatite was obtained. For the powder recovered after decontamination of the lead solution (PbHAp-SB), the XRD model highlighted additional maxima belonging to Ca 10 (PO 4) 5 (OH) 2 , Ca0.805Pb 4. 195 (PO 4)(OH) and PbH 2 P 2 O 7. The FTIR spectra of PbHAp-SB are similar to those of HAp-SB composites showing a broadening of the vibration peaks and a slight shift. The XPS and EDS studies illustrated the purity of the HAp-SB sample. Moreover, the presence of lead in the powder recovered after decontamination was also highlighted by XPS and EDS studies. The efficiency of HAp-SB in the adsorption of Pb2+ ions from the contaminated solution was also highlighted by ultrasound studies using double-distilled water as the reference liquid. The adsorption kinetics were investigated with the aid of Langmuir and Freundlich theoretical models. The results demonstrated that the HAp-SB ceramic composite has a strong affinity for the adsorption of Pb2+ ions from contaminated solutions. The removal efficiency of Pb2+ ions was about 92% for the initial Pb2+ concentration above 50 mg/L. The results of the cell viability and cytotoxicity studies demonstrated that HAp-SB nanoparticles did not influence negatively the HeLa cell's viability and did not induce any significant changes of the morphological features of HeLa cells after 24 h of incubation. The batch adsorption results as well as the cytotoxicity assay results suggested that the HAp-SB powder could be successfully used for the removal of Pb2+ from contaminated water. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
02728842
Volume :
50
Issue :
1
Database :
Academic Search Index
Journal :
Ceramics International
Publication Type :
Academic Journal
Accession number :
173974378
Full Text :
https://doi.org/10.1016/j.ceramint.2023.10.273