Back to Search Start Over

Aerodynamic analysis of an airframe-inlet integrated full-waverider vehicle designed by osculating cone theory.

Authors :
Luo, Shibin
Tian, Jiaqi
Wang, Dou
Zhang, Chao
Yi, Huaixi
Source :
Acta Astronautica. Jan2024, Vol. 214, p526-544. 19p.
Publication Year :
2024

Abstract

Recently proposed, the airframe/inlet integrated full-waverider vehicle design methodology introduces an innovative approach to the design of air-breathing hypersonic vehicles. This methodology, compared to traditional integrated waverider design methods, leverages the features of the waverider to enhance the compression ability of the precompression surface and the lift-to-drag ratio characteristics of the vehicle. However, existing full-waverider design methods, based on cone-derived waverider theory, result in a gas cross-flow phenomenon at the inlet lip due to the conical shockwave. This paper suggests an airframe/inlet integrated full-waverider vehicle design method that utilizes the osculating cone waverider theory to improve gas intake quality. Initially, we present the method to obtain profile lines and basic flow field models at different osculating planes of the vehicle. We then validate the osculating cone integrated full-waverider vehicle design methodology through computational fluid dynamics. Although the viscous effect slightly reduces the lift-to-drag ratio of the vehicle and the total pressure recovery coefficient at the isolator exit, the shock wave remains attached to the leading-edge. Finally, a comparison with the cone-derived integrated full-waverider vehicle reveals that the osculating cone integrated full-waverider vehicle achieves similar aerodynamic performance, but with superior gas intake quality. The results indicate that the methodology proposed herein holds promise for guiding future engineering applications of integrated full-waverider vehicles. • An osculating cone integrated full-waverider vehicle design method is proposed. • Aerodynamic analysis of an integrated vehicle obtained by this design method. • Numerical simulation investigates the effects of viscosity on this design method. • The present design method can improve the gas intake quality of the vehicle. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
00945765
Volume :
214
Database :
Academic Search Index
Journal :
Acta Astronautica
Publication Type :
Academic Journal
Accession number :
174015529
Full Text :
https://doi.org/10.1016/j.actaastro.2023.11.003