Back to Search Start Over

Airborne LiDAR Strip Adjustment Method Based on Point Clouds with Planar Neighborhoods.

Authors :
Sun, Zhenxing
Zhong, Ruofei
Wu, Qiong
Guo, Jiao
Source :
Remote Sensing. Dec2023, Vol. 15 Issue 23, p5447. 18p.
Publication Year :
2023

Abstract

Airborne light detection and ranging (LiDAR) data are increasingly used in various fields such as topographic mapping, urban planning, and emergency management. A necessary processing step in the application of airborne LiDAR data is the elimination of mismatch errors. This paper proposes a new method for airborne LiDAR strip adjustment based on point clouds with planar neighborhoods; this method is intended to eliminate errors in airborne LiDAR point clouds. Initially, standard pre-processing tasks such as denoising, ground separation, and resampling are performed on the airborne LiDAR point clouds. Subsequently, this paper introduces a unique approach to extract point clouds with planar neighborhoods which is designed to enhance the registration accuracy of the iterative closest point (ICP) algorithm within the context of airborne LiDAR point clouds. Following the registration of the point clouds using the ICP algorithm, tie points are extracted via a point-to-plane projection method. Finally, a strip adjustment calculation is executed using the extracted tie points, in accordance with the strip adjustment equation for airborne LiDAR point clouds that was derived in this study. Three sets of airborne LiDAR point cloud data were utilized in the experiment outlined in this paper. The results indicate that the proposed strip adjustment method can effectively eliminate mismatch errors in airborne LiDAR point clouds, achieving a registration accuracy and absolute accuracy of 0.05 m. Furthermore, this method's processing efficiency was more than five times higher than that of traditional methods such as ICP and LS3D. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
20724292
Volume :
15
Issue :
23
Database :
Academic Search Index
Journal :
Remote Sensing
Publication Type :
Academic Journal
Accession number :
174111905
Full Text :
https://doi.org/10.3390/rs15235447