Back to Search Start Over

Insights into Very Early Afterslip Associated with the 2021 M 8.2 Chignik, Alaska Earthquake Using Subdaily GNSS Solutions.

Authors :
Xiang, Yunfei
Bian, Yankai
Liu, Jie
Xing, Yin
Source :
Remote Sensing. Dec2023, Vol. 15 Issue 23, p5469. 16p.
Publication Year :
2023

Abstract

Based on subdaily kinematic GNSS solutions, the fault slip properties during the very early postseismic phase after the 2021 M 8.2 Chignik earthquake are investigated in this paper. The very early postseismic deformations captured by near-field GNSS sites can be well depicted by the power model. The comparison of afterslip determined by daily and subdaily GNSS solutions suggests that neglecting very early afterslip can result in the underestimation of postseismic slip. Compared with coseismic slip, the cumulative afterslip of the first 24 h is mainly focused in the southeast of the hypocenter, and the shallow updip afterslip appears after this earthquake. The spatio-temporal evolution of the afterslip reveals that the patch of afterslip is immediately generated after the earthquake, and then the postseismic slip gradually grows along the afterslip patch. The magnitude of the afterslip patch varies remarkably within the 24 h following the earthquake, especially in the first several hours. Meanwhile, the spatio-temporal patterns of aftershocks and afterslip exhibit strong similarity during the first 24 h, suggesting that very early afterslip may be a possible driving factor of aftershocks. Moreover, most of the afterslip patches and aftershocks occurring immediately after this earthquake are situated in the area covered by positive Coulomb Stress Change (CSC), which implies that the immediate afterslip and aftershock activities can be influenced by the coseismic CSC. The following afterslip process further releases coseismic CSC and then influences the spatio-temporal variations of aftershock activities. Thus, the afterslip may be a possible triggering mechanism of very early aftershocks for this earthquake, alongside the effects of the CSC generated by coseismic rupture. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
20724292
Volume :
15
Issue :
23
Database :
Academic Search Index
Journal :
Remote Sensing
Publication Type :
Academic Journal
Accession number :
174111927
Full Text :
https://doi.org/10.3390/rs15235469