Back to Search Start Over

Correlation Analysis of Large-Span Cable-Stayed Bridge Structural Frequencies with Environmental Factors Based on Support Vector Regression.

Authors :
Xu, Jingye
Xiao, Tugang
Liu, Yu
Hong, Yu
Pu, Qianhui
Wen, Xuguang
Source :
Sensors (14248220). Dec2023, Vol. 23 Issue 23, p9442. 16p.
Publication Year :
2023

Abstract

The dynamic characteristics of bridge structures are influenced by various environmental factors, and exploring the impact of environmental temperature and humidity on structural modal parameters is of great significance for structural health assessment. This paper utilized the Covariance-Driven Stochastic Subspace Identification method (SSI-COV) and clustering algorithms to identify modal frequencies from four months of acceleration data collected from the health monitoring system of the Jintang Hantan Twin-Island Bridge. Furthermore, a correlation analysis is conducted to examine the relationship between higher-order frequency and environmental factors, including temperature and humidity. Subsequently, a Support Vector Machine Regression (SVR) model is employed to analyze the effects of environmental temperature on structural modal frequencies. This study has obtained the following conclusions: 1. Correlation analysis revealed that temperature is the primary influencing factor in frequency variations. Frequency exhibited a strong linear correlation with temperature and little correlation with humidity. 2. SVR regression analysis was performed on frequency and temperature, and an evaluation of the fitting residuals was conducted. The model effectively fit the sample data and provided reliable predictive results. 3. The original structural frequencies underwent smoothing, eliminating the influence of temperature-induced frequency data generated by the SVR model. After eliminating the temperature effects, the fluctuations in frequency within a 24 h period significantly decreased. The data presented in this paper can serve as a reference for further health assessments of similar bridge structures. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
14248220
Volume :
23
Issue :
23
Database :
Academic Search Index
Journal :
Sensors (14248220)
Publication Type :
Academic Journal
Accession number :
174113053
Full Text :
https://doi.org/10.3390/s23239442