Back to Search Start Over

Quantitative mixed-valence state identification of metal ions based on fluorescence response of graphene quantum dots.

Authors :
Xu, Jing
Yang, Juan
Wang, Zhongteng
Li, Pei
Lan, Jian
Yu, Risheng
Li, Jie
Li, Lu
Liu, Wei
Chen, Junlang
Feng, Shangshen
Chen, Liang
Source :
Materials & Design. Dec2023, Vol. 236, pN.PAG-N.PAG. 1p.
Publication Year :
2023

Abstract

Quantitative identification of mixed-valence metal ions in solution by the distinctive fluorescence responses of graphene quantum dots. [Display omitted] • Quantitative mixed-valence state identification of Fe3+/Fe2+ solution by graphene quantum dots (GQDs). • The real-time monitoring of the dynamic changes in mixed-valence states triggered by the redox process was realized. • This method can be extended to other metal ions (Cr3+/Cr2+ or Cu2+/Cu+) and typically functionalised GQDs. • A universal and facile method for the quantitative mixed-valence state identification of metal ions in a solution. Quantitative identification of mixed-valence metal ions is essential for gaining deeper insights into critical chemical and biological processes in environmental science, chemical engineering, and biological systems. However, a simple approach of quantitative identification mixed-valence metal ions in solution has remained a challenge. In this study, we have experimentally observed a significant linear correlation (R2 = 0.99) between the concentration of high-valence metal ions (using iron ions as an example) and the fluorescence intensity of graphene quantum dots (GQDs). Utilizing the distinct fluorescence responses of GQDs to high-valence and low-valence metal ions, reliable quantitative detection of mixed-valence metal ions has been successfully achieved. Remarkably, we introduced real-time monitoring of mixed-valence metal ions, revealing a shift from a molar ratio of approximately 4.0 to 2.0. Density functional theory calculations have revealed significant differences in charge transfer between high-valence and low-valence states of metal ions adsorbed onto GQDs. Furthermore, the versatility of this method can extend to various types of GQDs and metal ions, highlighting its universal applicability. This work presents a simple, convenient, and cost-effective approach for quantitatively identifying mixed-valence metal ions in solution, offering a new avenue and opportunity for applications in biochemistry, environmental science, catalysis and materials science. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
02641275
Volume :
236
Database :
Academic Search Index
Journal :
Materials & Design
Publication Type :
Academic Journal
Accession number :
174184834
Full Text :
https://doi.org/10.1016/j.matdes.2023.112465