Back to Search
Start Over
How Effective is Integrated Vector Management Against Malaria and Lymphatic Filariasis Where the Diseases Are Transmitted by the Same Vector?
- Source :
-
PLoS Neglected Tropical Diseases . 12/11/2014, Vol. 8 Issue 12, p1-15. 15p. - Publication Year :
- 2014
-
Abstract
- Background: The opportunity to integrate vector management across multiple vector-borne diseases is particularly plausible for malaria and lymphatic filariasis (LF) control where both diseases are transmitted by the same vector. To date most examples of integrated control targeting these diseases have been unanticipated consequences of malaria vector control, rather than planned strategies that aim to maximize the efficacy and take the complex ecological and biological interactions between the two diseases into account. Methodology/Principal Findings: We developed a general model of malaria and LF transmission and derived expressions for the basic reproductive number (R0) for each disease. Transmission of both diseases was most sensitive to vector mortality and biting rate. Simulating different levels of coverage of long lasting-insecticidal nets (LLINs) and larval control confirms the effectiveness of these interventions for the control of both diseases. When LF was maintained near the critical density of mosquitoes, minor levels of vector control (8% coverage of LLINs or treatment of 20% of larval sites) were sufficient to eliminate the disease. Malaria had a far greater R0 and required a 90% population coverage of LLINs in order to eliminate it. When the mosquito density was doubled, 36% and 58% coverage of LLINs and larval control, respectively, were required for LF elimination; and malaria elimination was possible with a combined coverage of 78% of LLINs and larval control. Conclusions/Significance: Despite the low level of vector control required to eliminate LF, simulations suggest that prevalence of LF will decrease at a slower rate than malaria, even at high levels of coverage. If representative of field situations, integrated management should take into account not only how malaria control can facilitate filariasis elimination, but strike a balance between the high levels of coverage of (multiple) interventions required for malaria with the long duration predicted to be required for filariasis elimination. Author Summary: Integrated vector management aims to optimize efficacy and make better use of available funds, including targeting multiple diseases, using one or more interventions. However, we have relatively poor understanding of the programmatic demands that arise when controlling two diseases. For instance, does the intensity, duration of deployment, or type of intervention most suitable for each disease overlap or clash? We developed a mathematical model to explore these issues for the example of the vector-borne diseases malaria and lymphatic filariasis. Since the causative agents of these diseases are transmitted by the same mosquito species in certain areas, there is clear potential for an integrated approach using long-lasting insecticidal nets (LLINs) or larval source management. We found that the transmission potential of both malaria and LF is most sensitive to changes in mosquito survivorship and the duration of the feeding cycle, supporting the usefulness of LLINs. In areas where both diseases occur, malaria elimination was predicted to require high levels of both LLINs and larval source management, whereas either intervention at a low intensity was sufficient to eliminate LF, if maintained for a longer period. This highlights that integrated control programs should be flexible and dynamic in order to accommodate these demands. [ABSTRACT FROM AUTHOR]
Details
- Language :
- English
- ISSN :
- 19352727
- Volume :
- 8
- Issue :
- 12
- Database :
- Academic Search Index
- Journal :
- PLoS Neglected Tropical Diseases
- Publication Type :
- Academic Journal
- Accession number :
- 174303841
- Full Text :
- https://doi.org/10.1371/journal.pntd.0003393