Back to Search Start Over

Knockdown of TPI in human dermal microvascular endothelial cells and its impact on angiogenesis in vitro.

Authors :
Herre, Christina
Nshdejan, Arpenik
Klopfleisch, Robert
Corte, Giuliano Mario
Bahramsoltani, Mahtab
Source :
PLoS ONE. 12/20/2023, Vol. 18 Issue 12, p1-15. 15p.
Publication Year :
2023

Abstract

Introduction: Angiogenic behaviour has been shown as highly versatile among Endothelial cells (ECs) causing problems of in vitro assays of angiogenesis considering their reproducibility. It is indispensable to investigate influencing factors of the angiogenic potency of ECs. Objective: The present study aimed to analyse the impact of knocking down triosephosphate isomerase (TPI) on in vitro angiogenesis and simultaneously on vimentin (VIM) and adenosylmethionine synthetase isoform type 2 (MAT2A) expression. Furthermore, native expression profiles of TPI, VIM and MAT2A in the course of angiogenesis in vitro were examined. Methods: Two batches of human dermal microvascular ECs were cultivated over 50 days and stimulated to undergo angiogenesis. A shRNA-mediated knockdown of TPI was performed. During cultivation, time-dependant morphological changes were detected and applied for EC-staging as prerequisite for quantifying in vitro angiogenesis. Additionally, mRNA and protein levels of all proteins were monitored. Results: Opposed to native cells, knockdown cells were not able to enter late stages of angiogenesis and primarily displayed a downregulation of VIM and an uprise in MAT2A expression. Native cells increased their TPI expression and decreased their VIM expression during the course of angiogenesis in vitro. For MAT2A, highest expression was observed to be in the beginning and at the end of angiogenesis. Conclusion: Knocking down TPI provoked expressional changes in VIM and MAT2A and a deceleration of in vitro angiogenesis, indicating that TPI represents an angiogenic protein. Native expression profiles lead to the assumption of VIM being predominantly relevant in beginning stages, MAT2A in beginning and late stages and TPI during the whole course of angiogenesis in vitro. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
19326203
Volume :
18
Issue :
12
Database :
Academic Search Index
Journal :
PLoS ONE
Publication Type :
Academic Journal
Accession number :
174341175
Full Text :
https://doi.org/10.1371/journal.pone.0294933