Back to Search
Start Over
Gut Bacteriomes and Ecological Niche Divergence: An Example of Two Cryptic Gastropod Species.
- Source :
-
Biology (2079-7737) . Dec2023, Vol. 12 Issue 12, p1521. 16p. - Publication Year :
- 2023
-
Abstract
- Simple Summary: Nowadays, it is well known that the gut bacterial microbiome is crucially important for the adaptation of multicellular organisms to their environment. In this study, we aimed to identify the differences between the bacteriomes of two closely related marine snail species living in sympatry but feeding in different micro-niches. Although there were significant interspecies differences detected during the summer season, we did not observe this dissimilarity during the cold season. Moreover, the diversity of bacterial communities associated with snails decreased in autumn. We suggest that bacteria predominantly associated with one species degrade its toxic feeding substrate. These results help to understand the role of bacteriomes in the adaptation and divergence of closely related species. Symbiotic microorganisms may provide their hosts with abilities critical to their occupation of microhabitats. Gut (intestinal) bacterial communities aid animals to digest substrates that are either innutritious or toxic, as well as support their development and physiology. The role of microbial communities associated with sibling species in the hosts' adaptation remains largely unexplored. In this study, we examined the composition and plasticity of the bacteriomes in two sibling intertidal gastropod species, Littorina fabalis and L. obtusata, which are sympatric but differ in microhabitats. We applied 16S rRNA gene metabarcoding and shotgun sequencing to describe associated microbial communities and their spatial and temporal variation. A significant drop in the intestinal bacteriome diversity was revealed during the cold season, which may reflect temperature-related metabolic shifts and changes in snail behavior. Importantly, there were significant interspecies differences in the gut bacteriome composition in summer but not in autumn. The genera Vibrio, Aliivibrio, Moritella and Planktotalea were found to be predominantly associated with L. fabalis, while Granulosicoccus, Octadecabacter, Colwellia, Pseudomonas, Pseudoalteromonas and Maribacter were found to be mostly associated with L. obtusata. Based on these preferential associations, we analyzed the metabolic pathways' enrichment. We hypothesized that the L. obtusata gut bacteriome contributes to decomposing algae and detoxifying polyphenols produced by fucoids. Thus, differences in the sets of associated bacteria may equip their closely phylogenetically related hosts with a unique ability to occupy specific micro-niches. [ABSTRACT FROM AUTHOR]
Details
- Language :
- English
- ISSN :
- 20797737
- Volume :
- 12
- Issue :
- 12
- Database :
- Academic Search Index
- Journal :
- Biology (2079-7737)
- Publication Type :
- Academic Journal
- Accession number :
- 174401665
- Full Text :
- https://doi.org/10.3390/biology12121521